
QoS and resource management in distributed interactive
multimedia environments

Klara Nahrstedt & Ahsan Arefin & Raoul Rivas &
Pooja Agarwal & Zixia Huang & Wanmin Wu &

Zhenyu Yang

Published online: 28 October 2010
Springer Science+Business Media, LLC 2010

Abstract Quality of Service (QoS) is becoming an integral part of current ubiquitous
Distributed Interactive Multimedia Environments (DIMEs) because of their high resource
and real-time interactivity demands. It is highly influenced by the management techniques
of available resources in these cyber-physical environments. We consider QoS and resource
management influenced by two most important resources; the computing (CPU) and
networking resources. In this paper, we survey existing DIME-relevant QoS and resource
management techniques for these two resources, present their taxonomy, compare them,
and show their impacts on DIMEs. Finally, we discuss appropriateness of those techniques
in a sample DIME scenario.

Keywords Quality of service . Resource management . DIME . Bandwidth management .

Delay management

Multimed Tools Appl (2011) 51:99–132
DOI 10.1007/s11042-010-0627-7

K. Nahrstedt : A. Arefin (*) : R. Rivas : P. Agarwal : Z. Huang :W. Wu
Department of Computer Science, University of Illinois at Urbana-Champaign,
201 N. Goodwin Avenue, Urban, IL 61801–2302, USA
e-mail: marefin2@illinois.edu

K. Nahrstedt
e-mail: klara@illinois.edu

R. Rivas
e-mail: trivas@illinois.edu

P. Agarwal
e-mail: pagarwl@illinois.edu

Z. Huang
e-mail: zhuang21@illinois.edu

W. Wu
e-mail: wwu23@illinois.edu

Z. Yang
School of Computing and Information Sciences, Florida International University, 11200 SW 8th Street,
Miami, FL 33199, USA
e-mail: yangz@cis.fiu.edu

1 Introduction

Distributed Interactive Multimedia Environments (DIMEs) are becoming ubiquitous
cyber-physical spaces, where we work and play on regular basis. Examples of
DIMEs are tele-presence environments [4, 21], and multi-player gaming spaces [18].
More recently, we are seeing even more advanced tele-presence and gaming DIME
environments as new 3D sensory, actuating and display devices are becoming available
and cost-effective [77]. Examples are 3D tele-immersion environments [79] and 3D
games.

Several major problems of the advanced DIME environments are becoming clear. First,
the scale of the sensors and actuators in each of the cyber-physical spaces connected via
high-performance networks is increasing due to availability and cost effectiveness. We are
seeing rooms with ten’s of 3D cameras (see Fig. 1), microphone arrays, body sensors, and
multiple displays that surround physical spaces for dance, exercise, and/or physical games.
Second, real-time interactions and real-time guarantees in distributed settings are in
high demand due to tasks interactivity among users and devices located across
geographically distributed DIME spaces (see Fig. 2).

To solve the above problems, we need to carefully organize end-to-end computing and
networking resources via appropriate local and distributed services such as resource
admission, allocation, scheduling, adaptation services as well as parameterize the
performance metadata (called Quality of Service parameters) that describe the DIME
resources services. Over the last 20 years, there has been a large body of related work on
Quality of Service (QoS) and resource management of multimedia systems and networks for
distributed multimedia applications such as video-conferencing, video-on-demand, and
others (e.g., [49, 50]). In this paper, we revisit, survey and evaluate the existing QoS and
resource management techniques for the advanced cyber-physical DIME environments that
are emerging. Our goal will be (a) in Section 2 to provide readers with our DIME
assumptions and the corresponding taxonomy and comparison criteria, (b) in Section 3 to
survey and compare DIME-relevant resource management techniques across two most
important resources, the computing (CPU) and networking resources, and (c) in Section 4
to evaluate and discuss appropriateness of techniques in example DIME scenarios. Section 5
will conclude the paper with further directions of this area.

Fig. 1 Cyber-physical spaces/rooms with large scale of interactive sensors and actuators

100 Multimed Tools Appl (2011) 51:99–132

2 DIME assumptions, taxonomy and comparison criteria

2.1 DIME assumptions

Large scale of sensory and actuating devices per site (cyber-physical space), real-time
correlated streams, real-time and synchronous guarantees for multi-modal data delivery and
interactive distributed communication are key characteristics of DIMEs [77]. Users not
only interact with their own cyber-physical environment that surrounds them (as shown in
Fig. 1), but also with other remote users and their cyber-physical environments through
multiple heterogeneous communication channels. Usually these types of multi-site
geographically distributed cyber-physical DIME spaces as shown in Figs. 1 and 2 are
organized from the computing and network infrastructure point of view as follows: each
cyber-physical site consists of several local computing nodes (LN), that support digital
sensing (input cameras, microphones, body sensors) of the physical space (e.g., users) as
well as digital actuation/display (output displays, haptics) of information to the physical
space (e.g., users). The local computing nodes LN at each site connect to an aggregation
point, called rendezvous point (RP), via a local area network (LAN). Wide Area Network
(WAN) Internet communication occurs among remote cyber-physical sites. The communi-
cation among sites happens via multiple logical channels through RPs. Hence, RPs
represent a peer-to-peer overlay network over which real-time interactions and guarantees
must be delivered. Figure 3 shows an example of five sites DIME, and how their computing
(LN/RP nodes) and networking (logical connections among LN/RP nodes) resources are
organized.

Fig. 2 Multi-site 3D DIME infrastructure. Each site includes multiple cameras and displays, all connected
via LAN. All sites are connected via WAN Internet

Multimed Tools Appl (2011) 51:99–132 101

DIME architecture can be also modeled as a multi-tier architecture, where (1) the LN
and RP nodes, capturing and sending multi-streams,1 represent the capture tier at the
sender-side, (2) the LN and RP nodes, displaying and rendering streams, represent
rendering tier at the receiver-side, and (3) the protocols between LN and RP nodes,
transmitting stream data, represent the transmission tier.

2.2 Taxonomy of DIME resources

The two most important resources that DIMEs need to carefully manage are (a) the
computing resource CPU and (b) the network resource within each local site (LAN
resources), and across multiple sites (WAN resources).2

CPU resource is crucial for DIME systems at the LN and RP nodes since it needs to
process various sensing streams in real-time as well as schedule different interactive media
and control tasks in real-time manner. The CPU resource can become bottleneck very
quickly at the LNs and RPs due to the competition among large scale of devices even
though they generate correlated tasks/streams. If this resource is not carefully managed,
real-time interactivity violations, temporal degradation of sensory media and tasks delays
start to happen very early in the DIME end-to-end communication. To achieve real-time
guarantees, high real-time interactivity, and high temporal quality among the multi-modal
sensory information, we need to deploy multimedia-aware best effort CPU schedulers or
multimedia-specific soft-real-time CPU schedulers. We will survey and compare various
CPU schedulers in Section 3.1.

Network resource is crucial for DIME systems (between LN and RP nodes) since large
amount of multi-modal data needs to be exchanged in real-time. The network resource
among the LNs and RPs can become bottleneck very quickly due to the large scale of
networked devices in DIME, high number of competing flows, and high traffic rate demands.
Often to remedy the bottleneck, network service providers upgrade the routers, links and offer
higher bandwidth and throughput to RPs. However, this is not sufficient for DIME
applications since large bandwidth and throughput do not prevent head-of-line blocking
effects of the multi-modal sensory traffic, hence yielding undesirable communication

2 Another resource would be storage, but since we are discussing distributed interactive systems, networking
and CPU are of higher importance.

1 We will use streams and flows notations interchangeably throughout the paper.

Fig. 3 Architectural model of
distributed interactive multimedia
environment

102 Multimed Tools Appl (2011) 51:99–132

delays. Moreover communications between RPs are done over unreliable Internet.
Therefore, for DIMEs we need to consider bandwidth and delay management concurrently
and carefully. In bandwidth management, to achieve real-time guarantees, high real-time
interactivity and high spatial and temporal media quality, we need to deploy network
resource allocation schemes based on reservation and/or adaptation principles. In delay
management, to achieve real-time interactivity and guarantees, we need to deploy per flow
packet/message scheduling techniques over queues in the network protocol stack as well as
buffer control and stream synchronization. We will survey and compare various bandwidth
and delay management techniques in Section 3.2.

2.3 DIME evaluation/comparison criteria

As we alluded above, DIME resources and their services (reservation, adaptation,
scheduling, buffering, and synchronization) will be evaluated according to their
performance such as delay they induce or bandwidth they demand. Performance levels of
services are described and represented by Quality of Service and its metrics. We will
consider two major metrics: (a) bandwidth and (b) delay, and where appropriate also their
related metrics, packet loss, jitter, and skew.

Bandwidth Though the term bandwidth is usually used in networking applications, here we
classify bandwidth in two classes: network bandwidth and CPU bandwidth.

& Network Bandwidth: Network bandwidth refers to the bandwidth capacity or available
bandwidth in bit/s, which typically means the net bit rate, channel capacity or the
maximum throughput of a logical or physical communication path in a digital
communication system.

& CPU Bandwidth: CPU bandwidth refers to the available processing power in cycle/s,
which typically means the net processing rate, net utilization and maximum throughput
of CPU tasks.

Network bandwidth is important for high quality data transmission among DIME LNs
and RPs to ensure high quality of spatial and temporal multi-modal sensory delivery. CPU
bandwidth is important for high task throughput and high quality spatial and temporal
media processing at all computational nodes in the system. The major goal of bandwidth
management is to achieve high throughput of tasks at the end hosts and high throughput of
packets in the network. This is necessary due to the high scale of sensory data as well as
high sampling rate of sensory and actuating devices during running DIME sessions.
Different kinds of network admission control and reservation protocols have been proposed
to manage network bandwidth in current Internet. On the other hand, many CPU admission
and scheduling algorithms at the computational nodes have been explored to manage CPU
bandwidth as we will survey in Section 3.

Delay Each DIME computational or communication task and each packet/message
processing along the end-to-end path(s) between LNs and RPs take time and cause timely
overhead, called delay. DIME considers three types of delays: sender-side delay, network
delay and receiver-side delay.

& Sender-side delay (Dsender): We define sender-side delay as the sum of computing
delays incurred by input computing devices (LNs at the sending site) and intermediate
node(s) (RP at the sending site), and the communication delays incurred by traffic from

Multimed Tools Appl (2011) 51:99–132 103

input LNs to RP. Computing delays caused by stream acquisition and encoding tasks
are main part of the sender-side delay in DIMEs. Video capturing and computing
(including 2D motion detection and 3D reconstruction) and audio capturing are some of
the sources of data acquisition delays.

& Network delay (Dnet): Metropolitan Area Network (MAN) and WAN transmission
delays among RPs in the current Internet are the sources of network delay.

& Receiver-side delay (Dreceiver): Receiver-side delay is defined as the sum of computing
and communication delays at the receiving site. Computing delays happen in the output
devices (rendering displays) and communication delays are incurred by the traffic from
RP to output LNs. Rendering and decoding tasks are the main sources of receiver-side
delay.

The end-to-end delay (De2e) is the sum of these three types of delay in the system,
i.e.,

De2e ¼ Dsender þ Dnet þ Dreceiver

The overall goal for DIMEs is to achieve De2e small enough for each packet of each
stream so that interactive communications among remote sites is possible.

Packet loss Another QoS metric that affects the performance of DIME system specially
the audio quality is the packet loss. Packet loss is quite common in current Internet using
DCCP and UDP type transport protocol. Lost packet might mean a missing frame. Packet
loss can be caused by a number of factors, including signal degradation over the network
medium due to multi-path fading (in wireless channel), corrupted packets rejected in-
transit, packet drop because of channel congestion, faulty networking hardware, faulty
network drivers or normal routing routines. Packet loss in DIME applications may create
sudden silence in audio communication and void or still screen in case of video
transmission. Some applications try to mask packet loss by forward error correction (e.g.
adding redundant information or retransmitting the lost packets). Both delay and
bandwidth management consider avoiding packet loss and/or try to mask it in case of
congested network.

Jitter Deviation in expected packet arrival time means variability in packet delivery, called
jitter. Jitter is used as a measure of the variability over time of the packet latency across a
network. A network with constant latency has no variation (or jitter). Packet jitter is
expressed as an average of the deviation from the network mean latency. Low jitter
smoothes the traffic and improves the real-time interactivity and hence it is the most
desirable in DIMEs.

Skew Another important QoS parameter in a multimedia environment is skew. It is defined
as the difference between the delays suffered by the monomedia flows belonging to the
same multimedia stream. For example, skew defines how well the synchronization is
between audio and video flows. Lower skew means better synchronization. As most of the
DIME applications have separate source of monomedia flows (e.g., microphone for audio
and camera for video), maintaining synchronization over the internet is a big challenge.

Table 1 summarizes the resource taxonomy and the QoS-based evaluation metrics that
we will use to compare the various resource management techniques, appropriate for DIME
cyber-physical environments.

104 Multimed Tools Appl (2011) 51:99–132

3 DIME resource management

We divide this section into two subsections: CPU Resource Management and Network
Resource Management. Bandwidth and delay management techniques are discussed in
network resource management subsection.

3.1 CPU resource management

Managing CPU resource across multiple tasks is a scheduling problem. Based on the
strictness in the QoS guarantees they provide, we can classify CPU management algorithms
into two broad categories: best-effort multimedia schedulers and real-time multimedia
schedulers. The rest of this section surveys in detail both of these categories and shows how
they impact the QoS metrics mentioned in Table 1.

3.1.1 Best effort schedulers

Schedulers in this category follow application models similar to those of time-share general
purpose systems. A system can concurrently run multiple tasks. Each of these tasks is
assigned a time slice of the CPU based on a predefined policy. At the end of its time slice
the scheduler would make another scheduling decision. We further divide this into two
classes: priority-based scheduler and proportional-share scheduler.

A. Priority-based schedulers
General purpose Operating Systems extend their time-sharing schedulers to allow

priorities to support multimedia applications resulting in a round-robin with multilevel
feedback policy. Under this policy the scheduler always selects the process with the
highest priority. An example of this is the Portable Operating System Interface
(POSIX) [55].Under heavy system loads, processes with low priorities scheduled by
these schemes suffer from starvation and unfairness, which causes increased delay.
Developers using this scheduler resort to use over-provisioning to minimize unfairness
and starvation at the expense of low system utilization.

In order to reduce these problems some systems incorporate a decay-usage policy
[20], as part of their schemes. Under this policy the scheduler will temporarily
decrease the priority of CPU intensive applications and will favor tasks with lower
CPU utilization. Linux and SVR4 Unix are examples of these systems. These
schedulers are effective providing balanced CPU resource allocation across all the
streams but in some cases will fail to provide the sustained throughput required by
multimedia applications.

More recent approaches try to tackle this transient problem. For example, the
Multimedia Class Scheduler implemented in Windows Vista defines various

Table 1 Impact of system resources on QoS metrics

QoS Metrics → Bandwidth Delay Packet Loss Jitter Skew

CPU Network Dsender Dnet Dreceiver

CPU resource √ X √ X √ X √ √
Network resource X √ √ √ √ √ √ √

Multimed Tools Appl (2011) 51:99–132 105

multimedia classes. Each multimedia class specifies different QoS parameters and
patterns. The scheduler then temporarily boosts the priority of all the threads that have
indicated that are delivering a stream as part of the process running in the foreground [59].

Another important approach is the scheduler proposed by Banachowski et al. [5],
which uses techniques from real-time systems to improve the responsiveness of time-
share systems. In his approach, multimedia processes preserve the time-share system
model from an application point of view, but internally the scheduler will assign them a
deadline in a similar fashion as it occurs with real-time processes. Since the application
model is unchanged, a heuristic is used to estimate the task deadline. This scheme has
the potential of providing the same QoS guarantees in terms of bandwidth and delay as
those of real-time schedulers discussed in Section 3.1.2. However, in practice the results
are heavily dependent on the quality of the deadline values determined by the heuristic
for the particular application.

B. Proportional-share schedulers
This type of scheduler is slice-based with a weight-based round robin policy. These

schedulers guarantee that if there are Mcredits (shares/tickets) in the system, then
application holding N<M credits will get at least N/M of the CPU time in average. In
some sense, each process appears to run in its own processor with N/M of the capacity
of the real hardware. A very important advantage of this scheduler is that it uses the
same application model of time-share general purpose systems, allowing existing
applications to obtain statistical QoS guarantees without modification.

In many proportional-shares scheduling algorithms the throughput of a task is
directly proportional to the number of tickets (credits/shares) it holds and the response
time is inversely proportional to it. However, in multimedia systems, applications do
not always follow this property. One important algorithm that decouples the number of
shares from the average latency is Earliest Eligible Virtual Deadline First (EEVDF)
from Stoica et al. [67].

However, EEVDF does not solve the latency problem completely, because applications
cannot specify precise timing requirements, just proportions. To solve that, Kim et al. [37]
proposed a proportional-share scheduler for multimedia applications based on the Stride
Scheduling [73]. While these approaches solve the problem of scheduling user level
tasks to guarantee statistical QoS, multimedia systems are still subject to livelock
problems introduced by the operating system.3 Jeffay et al. [31], propose to assign
weights to kernel threads and activities to solve this livelock problem.

One of the main problems of proportional share schedulers is that they only provide
statistical guarantees and they do not guarantee that the actual deadlines are met. For that
reason, applications that require more stringent QoS requirements usually employ real-
time schedulers along with some reservation mechanism. Next section will describe in
detail of these schedulers along with their advantages and their shortcoming.

3.1.2 Real-time schedulers

Schedulers in this category usually follow a periodic model, in which a task t defines a
certain computation time Ct that must be completed before a deadline Dt. The arrival

3 OS that is I/O intensive and spends most of its time processing I/O in the kernel, leaves very little time to
applications that are scheduled under a Proportional-Share policy.

106 Multimed Tools Appl (2011) 51:99–132

intervals of this computation task requests arrives at a constant rate 1/Pt. If the system is
constrained in such way that for every task t in the system the period is equal to the
deadline that is Pt=Dt, then the system follows the Liu-Layland model [43]. This model is
the most commonly used, due to its simplicity and the fact that it can still efficiently model
a great number of multimedia systems. Moreover, the delay of any task that meets its
deadline is bound to the period Pt specified by the application.

Optimal schedule solutions for this model along with exact and bounded schedulability
tests based on the processor utilization are well studied. Two of the major algorithms to
solve this model are the Rate Monotonic (RM) schedule using static priorities and the
Earliest Deadline First (EDF) schedule using dynamic priorities, both introduced by Liu
and Layland as part of their model. Formally, for the Rate Monotonic schedule the bounded
schedulability test is expressed by the following condition:

Xn

i¼n

Ci

Pi
� nð21=n � 1Þ

Here n is the number of tasks in the system, Ci is defined as the processing requirements
in units of time required by the i-th task in the system and Pi is the period of the i-th task in
the system. For the case of the Earliest Deadline First schedule, the bounded schedulability
test is the following:

Xn

i¼n

Ci

Pi
� 1

where n is the number of tasks in the system, Ci is defined as the processing requirements in
units of time required by the i-th task in the system, and Pi is the period of the i-th task in
the system.

One of the many systems in real-time schedulers is the Resource Kernel (RK) proposed
by Rajkumar et al. [56]. RK is a multi-resource kernel scheduler for real-time applications.
RK allows applications to perform reservations of multiple resources. RK uses a priority
inheritance algorithm with a bounded waiting time and a static priority algorithm (e.g. Rate
Monotonic) to schedule CPU resources.

The problem with static priority algorithms is that in some cases the maximum
achievable system throughput or utilization is under 100%. To solve this problem the Rialto
system [33] uses a dynamic priority algorithm, the Least Laxity First (LLF) algorithm. This
algorithm is similar to Earliest Deadline First and it also allows for full resource utilization.
In addition, the Rialto architecture also considers the scheduling of Best-Effort applications
that do not require QoS guarantees (e.g., a word-processor).

While the approach mentioned above allows seamlessly integration of best-effort and
real-time applications. Best-effort applications tend to suffer from starvation due to the fact
that they do not specify any reservation in the system. To solve this problem the SMART
system [54] uses a best-effort real-time approach based on Proportional Share scheduling
for overall resource allocation and the Earliest Deadline First scheduling to ensure that real-
time applications meet their deadlines. This allows users to prioritize best-effort
applications over real-time applications.

Another approach to solve this problem is to use hierarchical scheduling. In hierarchical
scheduling a parent scheduler assigns time slots to various child schedulers. The challenge
with these schedulers is to find a compositional real-time guarantee. Shin et al. [64]
proposes a model to find such guarantee when both schedulers are periodic.

Multimed Tools Appl (2011) 51:99–132 107

Usually systems based on compositional guarantees have complicated delay manage-
ment and might reduce the ability of the scheduler to take fully aware decisions. This is due
to the partition of resources across different child schedulers, resulting in reduced
throughput. To address this issue, Brandt et al. present a scheduling model called Resource
Allocation/Dispatching (RAD) [8] that decouples the resource allocation with the delivery
time of these resources. They use a modified EDF scheduler with dynamic period
adjustment and dynamic process rate adjustment.

A more recent approach that allows the seamless integration of best-effort and real-time
applications is Dynamic Soft-Real-Time (DSRT) [12], proposed by Chu et al. In DSRT, he
introduces the concept of CPU service classes. These service classes partition the set of
tasks in the system according to its QoS requirements. Each service class is handled by its
own scheduler. DSRT also uses reservation of resources, and adaptation to cope with task
resource demand variations along with cooperation across best-effort and EDF real-time
schedulers. Figure 4 shows the basic architecture of DSRT and its main components: the
Overrun Protection Timer, the Soft Real-Time Scheduler, the Admission Control and the
Cycle Demand Adaptor.

The problem with DSRT real-time schedulers is that usually the integration of network
constraints with CPU constraints. iDSRT [52] represents an integrated architecture using 3
main components: a CPU scheduler similar to DSRT, a network packet scheduler using
implicit EDF scheduling, and a Coordinator entity in the middleware using Time Division
Multiplexing Access (TDMA) to coordinate the access to the shared medium of the Wireless
Local Area Network. Figure 5 shows the basic architecture of the iDSRT framework along
with its main components previously discussed.

Finally, recent emerging virtualization technologies have brought back the problem of
hierarchical schedulers and compositional guarantees. Rivas et al. [58] proposes a much
simpler approach in which he uses a Dynamic Mapping (DM) of real-time tasks into virtual
CPU resources and then into physical CPU resources. It consists of three main entities: a
Distributed Kernel-level Coordinator, a Real-Time Scheduler, and a collection of
services and interfaces referred as the Janus Executive. Figure 6 shows the basic
architecture of Janus with its main entities. Janus dynamically maps real-time tasks into
Virtual CPU’s at the Virtual Machine Level and Virtual CPU’s with physical CPU’s at the
Virtual Machine Monitor level. These mappings result in a flat allocation of resources that
can be scheduled by the real-time scheduler. The real-time scheduler uses the partitioned

Fig. 4 Basic architecture of
DSRT

108 Multimed Tools Appl (2011) 51:99–132

Earliest Deadline First algorithm. Under this approach the flattened set of tasks are
partitioned across the physical CPU’s available in the machine. Then the EDF policy is
applied to each partition independently.

A summarized view of the scheduling systems and algorithms discussed above is shown
in Table 2.

3.2 Network resource management

Network management can be further classified into bandwidth management and delay
management. Bandwidth management uses network bandwidth effectively to reduce
packet loss by assigning sufficient bandwidth to the participants. Delay management
reduces jitter, skew for synchronization and most importantly network delays.

3.2.1 Bandwidth management

The bandwidth management techniques can be classified broadly into two categories: 1)
Reservation-based bandwidth management, and 2) Adaptive bandwidth management.

Reservation-based bandwidth management The bandwidth management in this category is
based on reserving bandwidth for an allocated request in advance during the session
initiation and this reservation is maintained till the session ends. Reservations are triggered
by one of the end host and the reservation requests are forwarded to all routers along the

Fig. 6 Basic architecture of
Janus

Fig. 5 Basic architecture of
iDSRT

Multimed Tools Appl (2011) 51:99–132 109

end-to-end path for admission control and finally QoS enforcement. Admission control is a
mechanism used to accept, modify or reject new connections. Admission control is based
on specific negotiation protocols in use. If QoSmin is the minimum QoS requirement for a
service, QoSreq is the requested QoS and QoSbound is the maximum supported QoS for a
service, then we can define admission control by the following equation:

QoSmin � QoSreq � QoSbound

The bandwidth admission control checks the availability of bandwidth over shared
network resources using different types of admission tests. An example of admission test
for ensuring proper bandwidth allocation and throughput guarantees is given as under the
following equation, where j is the number of channels with already allocated bandwidth:

X
j

B j
a þ Br � Bg

Here, B j
a is the allocated bandwidth for channel j, Br is the requested bandwidth for a

new channel and Bg is the total bandwidth in the system. The basic structure of reservation-
based model is shown in Fig. 7. Existing reservation protocols follow eithersender-driven
reservation or receiver-driven reservation. In sender-driven reservation the sender initiates
the reservation mechanism while in receiver-driven reservation the receiver initiates the
reservation mechanism. After the reservation is done, the data flows from the sender to the
receiver. The reservation protocols also differ in how the monitoring states are maintained
at the routers and hence can be classified as hard-state or soft-state. In hard-state
reservation the states are maintained at the routers from session initiation until the session
end, i.e. until the end hosts explicitly send a teardown message. In a soft-state reservation
the states are maintained only for a given time period (e.g., 30 sec), and hence, the end
hosts need to send refresh messages to keep the reservation states at the routers alive.

There are two well-known Internet architectures supporting advanced reservation: 1)
Integrated Services (Int-Serv), and 2) Differentiated Services (Diff-Serv). Int-Serv allows

Fig. 7 Request driven bandwidth reservation model

Table 2 Comparison of CPU scheduling algorithm suitable for DIME systems

Algorithm Scheduling Priority Best Effort Support Algorithms Adaptive

RK Static No RM, DM No

Rialto Dynamic Yes LLF No

SMART Dynamic Yes with QoS PS+EDF Yes

Hierarchical
Scheduling

Both Yes Any but requires to meet
constraints

No

RAD Dynamic Yes EDF+Priority and Period
Adjustment

Yes

DSRT Dynamic Yes EDF Yes

Janus Dynamic Yes EDF+Dynamic Mappings No

iDSRT Dynamic Yes EDF+TDMA Yes

110 Multimed Tools Appl (2011) 51:99–132

for fine grained QoS specification while Diff-Serv provides coarse grained QoS
specification. The details of both the architectures are explained further in the following
sections.

A. Integrated services (Int-serv)
Int-Serv allows for individual resource allocation and reservation for each request

originating at end hosts, and hence, provides finer guarantees of QoS requirements. To
implement Int-Serv, Resource Reservation Protocol (RSVP) was proposed by IETF
[7]. RSVP is a network layer protocol providing control signals and commands to
disseminate reservation requests/responses along the end-to-end path between end hosts.
RSVP enables resource allocation and reservation for applications having different QoS
requirements for their data flows. RSVP is a control protocol and depends on underlying
routing protocols to route the data flows. The sessions are identified by combination of
destination IP address, protocol ID, and destination port. It is a receiver-driven, uni-
directional, soft state reservation protocol and supports both unicast and multicast
sessions. RSVP supports four major functionalities (1) admission and policy control, (2)
packet classifier, (3) packet scheduler, and (4) resource reservation.

Each router in the end-to-end path runs a RSVP daemon, which upon receipt of a
path request message, determines if the router has sufficient available resources
(admission control) and determines if the user has administrative permission to make
the reservation (policy control). An error notification is sent to the requester if either
check fails. If both checks succeed, the RSVP daemon sets parameters in a packet
classifier and packet scheduler.

The traffic specification classifies the packets into three classes of services:

& Best-effort: traditional IP traffic with reliable delivery of data.
& Rate-sensitive: guaranteed transmission rate between source and destination,

helpful for Constant Bit Rate (CBR) traffic.
& Delay-sensitive: guaranteed timeliness of delivery with/without reliable delivery,

helpful for Variable Bit Rate (VBR) traffic.

The flow specification is used to communicate the required QoS requirements in
terms of level of service required for a data flow. The packet scheduler uses the flow
specification to schedule a packet at a node to achieve the promised QoS for each stream.

RSVP supports two types of reservations: distinct reservations and shared
reservations. In distinct reservations an individual flow is installed for each requesting
node in a given session while in a shared reservation, the resources are shared by non-
interfering set of requesting nodes. RSVP supports several filters which define various
reservation styles like:

& Wildcard-Filter Style: It specifies a shared reservation in which flows from all
upstream senders are mixed based on the largest resource requests on a shared link
between receivers and different senders.

& Fixed-Filter Style: It specifies distinct reservation with explicit scope on a link
based on the total reservation needed for all the requested senders in a session.

& Shared-Explicit Style: It specifies shared reservation with explicit scope in which
flows from all upstream senders, explicitly specified by the receiver, are mixed
together.

A major drawback of Int-Serv based protocol like RSVP is that it requires universal
deployment over all the nodes on the end-to-end path which requires changes in all the

Multimed Tools Appl (2011) 51:99–132 111

intermediate nodes. The amount of states needed to be maintained at each router hop
becomes very large in terms of memory and complexity with increase in number of
requests. The soft state maintenance requires periodic refresh messages which add to
the overall network traffic. In [74] and [69], authors have discussed remedy measures
for increasing scalability and deployability, however even with enhanced scalability of
Int-Serv, the slow upgrade of current networks towards deploying it makes it unlikely
that we will see major deployment of RSVP in near future, hence usage by DIMEs.

B. Differentiated services
To mitigate the scalability issues of Int-Serv model, IETF proposed Differentiated

Services (Diff-Serv) [53]. IntServ follows the flow-based QoS specification model,
where the end-hosts define QoS requirements for each flow, while DiffServ works on
class-based QoS model. The traffic in Diff-Serv is categorized into different classes,
known as Class of Service (CoS), and the network elements reserve resources based on
these classes. The routers assign higher priority to higher priority classes. The sender
uses Type of Service (ToS) bytes (redefined as DSCP field) in IP header, to specify the
class for a packet.

A Diff-Serv domain is divided into two types of nodes: boundary nodes and
interior nodes. The boundary nodes, which are essentially the end hosts, perform
packet classification, traffic shaping, and congestion control. The interior nodes
perform monitoring, traffic shaping, and re-marking packets based on the aggregate
class specified.

Per-Hop Behaviors (PHBs) are used by Diff-Serv enabled routers to define how a
packet is forwarded in the router. Diff-Serv provides some standardized set of PHBs,
however; users can define their own PHBs to specify what types of traffic are given
higher priority. A PHB provides queuing, packet scheduling, policing, traffic shaping
based on the service class and the Service Level Agreement (SLA) policy. Multiple
flows can belong to the same PHB and hence, are aggregated to form a Behavior
Aggregate (BA) at a given router. Some of the PHBs currently being supported include:

& Default PHB: This class is used for traditional best effort traffic.
& Class-Selector PHB: This class has same forwarding behavior as IP-precedence

based classification.
& Expedited Forwarding PHB: This class provides low-loss, low-latency, low-jitter,

and assured bandwidth service.
& Assured Forwarding PHB: In this class different flows in a BA can be provided

different forwarding assurances (like buffer space, bandwidth, loss-rate, etc.).

Though Diff-Serv provides better scalability, it suffers from several issues.
Provisioning in Diff-Serv requires knowledge of the traffic statistics to setup various
classes throughout the network. Also, the heterogeneity of the definition of classes
existing between different autonomous servers (one AS’s gold class might be another
AS’s bronze class) can lead to unknown behavior of the traffic. In Diff-Serv, we lose
the ability of fine-grain control over the bandwidth allocated to flows and hence, for
variable bit rate applications, this can potentially lead to over/under utilization of the
network. The biggest drawbacks of both RSVP and Diff-Serv models is the fact that
provisioning in independent of the routing process. Thus, there may exist a path in the
network that has the required resources, even when RSVP/DiffServ fails to find the
resources. To mitigate this effect, Traffic Engineering (TE) and Multiprotocol Label
Switching (MPLS) are used.

112 Multimed Tools Appl (2011) 51:99–132

In Diff-Serv framework since each domain might be incompatibly configured, it
does not solve the problem of providing end-to-end QoS. One entity which overcomes
this problem is the Bandwidth Broker.

C. Bandwidth broker
A Bandwidth Broker [50] is an entity responsible for providing QoS across

different network domains. A Bandwidth Broker manages the resources within the
specific domain by controlling request admission and allocation of resources based on
current network load and on SLA. To setup end-to-end QoS capability between two
nodes, Bandwidth Broker contacts its peer Bandwidth Brokers in the other domains to
negotiate and establish bilateral agreements and thus provides a purely administrative
way to setup QoS guarantees across different domains.

Table 3 shows the properties to RSVP and Diff-Serv protocols for bandwidth
management. The major drawback of reservation oriented bandwidth management is the
fixed resource allocation which might not work for applications which show high
variability in bandwidth needs. Thus, researchers propose to use adaptive bandwidth
management techniques which perform bandwidth monitoring and based on the probing
results assign and adapt to the changing requirements and availability of resources.

Adaptation-based bandwidth management The bandwidth management techniques in this
category continuously monitor network statistics like RTT, loss rate, packet size, etc., to
estimate current total available bandwidth between two nodes. Depending on the
monitoring output, it adapts the QoS request parameters. Admission control is done after
adaption and finally the admitted QoS parameters are enforced. The model of adaptation
driven bandwidth management is given in Fig. 8.

Bandwidth estimation is an important part of any adaptive bandwidth management
techniques and hence, many techniques either develop their own bandwidth estimation scheme
or they make use of several bandwidth estimation schemes proposed in literature like Pathload
[29, 30], Abget [2], Sting [62], and SProbe [60]. Pathload and Abget are similar to each
other and perform end-to-end bandwidth estimation of a TCP flow. Abget, Sting, and SProbe

Table 3 Properties of reservation-based resource management approaches

Algorithm QoS Specification
Model

Reservation
Initiation

State Reservation
Strategy

Amount of State
Maintenance
per hop

Scalability

RSVP [7] Flow based
(fine grained)

Receiver driven Soft state reservation High Low

Diff-Serv [53] Class based
(coarse grained)

Receiver driven Soft state reservation Low High

Fig. 8 Adaptation-based
bandwidth management

Multimed Tools Appl (2011) 51:99–132 113

use only single-end probing to estimate bandwidth on TCP flows. These techniques provide
the estimated total bandwidth to the bandwidth management schemes which adaptively
configure the bandwidth for the flows. This allows for dynamic bandwidth adaptation to the
changes occurring in network conditions. The adaptive bandwidth schemes can be
categorized based on if the bandwidth management is performed per flow or if it is
performed on aggregated correlated flows between a single source and common destination.

A. Single flow adaptive bandwidth management
Many of the transport layer protocols employing congestion control mechanisms

like TCP, DCCP perform simple adaptive bandwidth management on each flow based
on the congestion experienced in the network by reducing the sending rate. Apart from
transport layer protocols, many schemes perform bandwidth management at the
application layer as it allows for adaptation based on the specific needs and demands
of different applications. [1, 11, 41, 44, 71], and [81] are some of the examples of
application layer, single flow, adaptive bandwidth management schemes which employ
techniques like simple frame skipping, content based frame skipping using event/
motion detection and compression techniques to compress data in the frames.

One of the major drawbacks of single flow adaptive bandwidth management
schemes is that they do not allow aggregated congestion control on multiple flows.
Hence, single flow adaptation schemes are well suited for applications like video
streaming requiring one or more than one unrelated flows.

B. Multiple flows adaptive bandwidth management
In the face of emerging DIME-based multimedia applications like 3D tele-immersion

dealing with sending multiple correlated flows produced by multiple cameras, audio
devices, and different types of body sensors between a source and a destination node, it
becomes more advantageous to perform aggregated bandwidth management on the
correlated flows. We discuss two multi-flow adaptive bandwidth management schemes.

Ott and Patel in [Ott07] present Coordination Protocol (CP) which performs
coordinated bandwidth distribution across flows and allows for application based
context-specific coordination. CP is a transport layer protocol and uses a cluster-to-
cluster (C-to-C) model which provides congestion control on the aggregated flows
originating at a cluster and consumed at the other cluster. All the flows share a common
intermediary path between the clusters. An Aggregation Point (AP), usually the first hop
router away from the clusters is used to converge and diverge the flows at the sender
cluster and at the receiver cluster, respectively. CP first probes the network state to find
out the RTT, loss rate, and available bandwidth for each flow and uses the state tables to
store this information. After this, CP uses Bandwidth-Filtered Loss Detection (BFLD) to
estimate the correct amount of total bandwidth available for all the flows using the probe
results and hence, allows for distributing appropriate amount to each flow based on the
context-specific coordination. Based on CP, authors develop CP-RUDP for performing
congestion control on multiple flows produced in 3D tele-immersive systems. The
authors cover a case study of 3DTI systems, a specific type of DIME system, wherein the
bandwidth allocation across multiple flows is defined as shown below:

Bflowi ¼
FSizeð flowiÞPnumflows

i FSizeð flowiÞ
� ðBnet � numflowsÞ

where Bflowi is the bandwidth allocation for flowi, FSize(flowi) is the typical frame size
in flowi, Bnet is the available bandwidth on a per flow basis, and numflows is the total

114 Multimed Tools Appl (2011) 51:99–132

number of flows at the application layer which need to be considered together. Thus,
CP-RUDP protocol is an advanced protocol which achieves congestion control between
different flows at the transport layer level.

Another scheme by Yang et al. [80] proposes a multi-stream adaptation framework
for view-based bandwidth management in 3D tele-immersive environments. This
scheme makes use of the knowledge of application-dependent cues like user view,
correlation among multi-stream flows, and content. The scheme works with a bundle of
correlated streams generated at one source, and prioritizes some flows over other flows,
depending on the flow information contribution to the user’s view. We define the
camera view (camera orientation) Ovsi

��!
of a stream vsi to be the normal vector of the

imaging plane of the camera that produces the stream vsi, which can be obtained by the
calibration parameters acquired via the initialization phase. We define the user’s view as
the desired direction Ou

�!
of the view, user u would like to see. The flow information

contribution to the user’s view is determined by the contribution factor CFi of the stream
vsi. The contribution factor CFi of a stream vsi with respect to a given user rendering
view Ou

�!
is thereby defined by the scalar product of the two vectors: CFi ¼ Ovsi

��!�Ou
�!

. The
number of streams to select from each site is a tunable parameter. One can either select
the top k number of streams for a given view, or a dynamic number of streams with
contribution factor larger than a threshold THimp, depending on the network bandwidth
availability. This leads to a priority-based bandwidth allocation.

The priority-based bandwidth allocation scheme is based on the following principles;
(1) flows with bigger CF value have higher priority to be sent, and (2) after sending most
important flows with highest CF, if bandwidth is still available, a minimum frame sizes
for other flows are granted to widen the Field of View (FOV). Based on these principles,
the internal frame size allocation scheme for bandwidth management estimates an ideal
size of a frame belonging to a flow of a bundle. The algorithm is as follows. (1) flows of
a bundle are sorted in descending order of CF, and a target macro-frame4 size (TFS) is
determined, i.e., the underlying network estimates number of bits (TFS) it can transmit at
that time (TFS represents the available network capacity for a bundle of flows/streams).
So the admission control will compare available network capacity TFS with the macro-
frame demand that application desires to be transmitted, i.e., the admission test is
TFS < fs�P

i2SI CFi

� �
, where fs is the size of the frame in a macro-frame,5 and SI is

the set of flows in the bundle, and SIj j is the number of flows in the bundle. We have
two cases with respect to the admission control:

(1) IfðTFS � fs�P
i2SI CFiÞ, i.e., there is more network bandwidth available than

the desired application macro-frame size, then the allocated frame size Ai to be
transmitted is:

Ai ¼ minð fs; fs� CFi þ
ðTFS �Pi�1

j¼1 AjÞ � CFi
P SIj j

j¼1 CFj

Þ

5 We assume that each frame in the macro-frame has the same size since the cameras producing the frames
are the same, however, each frame might have a different contribution to the user’s view. If the frame
contributes fully to the view (i.e., camera is placed in the front of the user), then CF=1, and the desired frame
size to be transmitted is fs×CF=fs. If the frame contributes to the view only half-way (e.g., camera is placed
on the side of the user), then CF=0.5 and the frame size to be transmitted will be fs×0.5.

4 Marco-frame is a group of correlated 3D frames captured at the same time t and at the same site.

Multimed Tools Appl (2011) 51:99–132 115

(2) If ðTFS < fs�P
i2SI CFiÞ, i.e., the network bandwidth availability is lower than

the desired amount of bits for the application macro-frame, then the minimum
frame size Ai is allocated in order of priority as:

Ai ¼ minð fs� CFi; TFS �
Xi�1

j¼1

AjÞ

Thus, it is possible that some of the selected streams may not get the quota of
transmission. The adaptation is done at the application layer and hence, the metrics
used in the bandwidth management can be modified based on the requirements of the
application. Table 4 shows a summarized view of different kinds of adaptive bandwidth
management algorithms.

3.2.2 Delay management

Both delays and the variations of delays, i.e., “jitters”, are critical QoS metrics in DIMEs.
ITU G.114 [28] has prescribed that a one-way latency exceeding 400ms is unacceptable in
the two-party conference. A large body of work has been done in order to minimize the
delay components. On the other hand, managing jitters is mainly performed at the receiver
side. We will first review the schemes designed to reduce sender-side delays (Dsender) and
network delays (Dnet) in DIMEs, and then discuss the jitter management in the part of
receiver-side delays (Dreceiver).

Finally, we discuss how delay management impacts the skew in the correlated streams.
Since DIME can include multiple sensory streams (video, audio and etc.) that may be
mutually correlated [25], a good adaptation scheme should be developed to allow the real-
time synchronization among those streams. But it requires the coordination of all three
locations (sender-side, network, receiver-side locations), and it is sometimes very difficult
to achieve this without introducing additional latency overhead. We present the related

Table 4 Adaptation based bandwidth management algorithms

Algorithm Bandwidth Management
Model

Reservation
Initiation

Bandwidth Management Strategy

Agarwal-Rejaie [1] Single Flow Receiver driven Application/Layer and frame
skipping based.

Vickers-Albuquerque [71] Single Flow Sender driven Network/Layer and bit rate
based.

Chang-Zhong [11] Single Flow Sender driven Application/Content-based

Liu-Choudary [45] Single Flow Sender driven Application/Content,
compression based

Liu-Nelakuditi
[LiuOct04]

Single Flow Sender driven Application/Content-based

Yeung-Liew [81] Single Flow Sender driven Application/Content-based
frame skipping

Coordinated Protocol
[Ott07]

Multiple Flow Sender driven Network-based

Yang-Nahrstedt [80] Multiple Flow Sender driven Application/view-based

116 Multimed Tools Appl (2011) 51:99–132

studies of the delay management for multimedia synchronization, and consider delay issues
for multi-stream (bundle) cases.

In “Sender-side delay” to “Receiver-side delay” we discuss sender-side, network, and
receiver-side delay management for single streams. In “Multi-stream synchronization delay
management”, we discuss multi-stream synchronization delay management that utilizes the
individual stream delay control at all three locations.

Sender-side delay Sender-side delay is composed of computing delays at the input LNs and
local RP, as well as communication delays from the LNs to RP. Computing delays are
mainly due to stream acquisition and encoding/packetization tasks whereas communication
delays are composed of the sender buffering delay and transmission delay over the LAN.

Computing delay management can be categorized into two categories: software-based
and hardware-based. Software-based approaches use algorithmic improvement to reduce
2D video encoding and 3D reconstruction delays. The optimization of 2D codecs includes
speeding up the motion search [38, 42, 68] and the selection of macroblock coding-mode in
the video [17, 78]. The improvement of 3D reconstruction has also been achieved in [70].
The latency incurred on 2D audio encoding or 3D audio reconstruction is usually small.
Hardware-based approaches take advantage of parallelization on multi-core and GPU
architectures to accelerate capturing and processing of media data. This can be achieved by
using task multithreading on a single computer [23, 24], regardless of whether the computer
is a multi-core machine with [24] or without [23] GPU support.

The sender buffering delay depends on the packet scheduling and adaptation algorithm
at both application and transport layers. The sender buffer at the application layer can delay
the packets by scheduling with time spacing [25] to avoid congestion at the sender site. The
packets can also be delayed due to the interleaving scheme for loss concealment [72]. The
buffering delay at the transport layer on the other hand, is caused by the transport protocol
and its ability of adaptation in response to Internet dynamics. Both TCP’s additive increase
multiplicative decrease (AIMD) approach and DCCP (CID-2)’s TCP-like congestion
control scheme can increase the sender buffering abruptly under a sudden congestion.
DCCP (CID-3) implements a TCP-friendly rate control (TFRC) scheme which can allow
comparatively smooth throughput and the transport-layer buffering will change less
abruptly.

Internet network delay The network delay among DIME sites can be first categorized based
on whether a leased, specialized network is used or the commodity Internet is used. Cisco’s
tele-presence solution deploys a converged IP next-generation network (IP NGN) with both
inter-company and intra-company models [14]. Using such dedicated networks has the
advantage of avoiding resource competition with unpredictable public traffic and providing
abundant bandwidth as needed to minimize queuing and re-transmission delays caused by
congestions. However, the disadvantage is the cost and inflexibility to extend to more sites.

Many more DIMEs (e.g., Skype, TEEVE) use the open and free alternative—Internet—
as the communication medium. The end-to-end Internet delay management can be further
categorized into two groups: 1) point-to-point and 2) multi-point management. Point-to-
point delay management refers to the schemes that focus between two end points (i.e., RPs).
It is tightly related with bandwidth management, e.g., congestion control, as discussed in
Section 3.2.1, which can reduce the delays incurred by queuing and re-transmissions in
times of congestions.

When there are multiple sites collaborating in DIMEs, multi-point (topological) delay
management becomes important. Since the delay incurred on the network highly depends

Multimed Tools Appl (2011) 51:99–132 117

on the geographical distance between the sender and receiver, maintaining an efficient
multi-point Application Level Multicast (ALM) topology is thus critical for reducing
transmission delays in DIMEs.

There are mainly two ways of disseminating streams among multiple DIME sites: 1) IP
Multicast and 2) Application-Level Multicast. IP multicast [16] adds multicast support to
routers, and therefore achieves highly efficient bandwidth usage by avoiding duplicate
packets on the physical routing paths. However, its adoption is rather limited because of the
low scalability (routers have to maintain per-group states) and difficulty to support higher-
level functionalities due to semantic gap. To mitigate these issues, ALMs are proposed as
an alternative where an application-level overlay is used to disseminate streams among
multiple DIME sites. There has been a large body of work on constructing delay-efficient
multicast topologies, which can be roughly classified into two groups: 1) Tree-based, and 2)
Mesh-based.

Tree-based approaches construct a tree for each stream. In cases of multi-stream/multi-
site DIMEs, multiple trees are used. Tree-based approaches construct delay-optimized/
constrained trees depending on whether the goal is to minimize or bound the end-to-end
delays. The problem is often a case of the Steiner Tree problem, which is known to be NP-
complete [26]. Apart from the main goal of minimizing the total cost, DIMEs often imposes
additional constrains such as bandwidth, delay, jitter, or a combination thereof. Hence the
problem becomes a Constrained Steiner Tree (CST) problem. Researchers have proposed
many heuristic algorithms to achieve sub-optimal results. [32, 34, 82] are some examples
for the delay constrained CST problem.

Zhu’s algorithm [82] achieves O(KN3log N) complexity, where N is the number of
nodes, and K is the number of paths in the initial minimal cost tree. Kompella’s algorithm
requires O(N3) complexity to construct a delay-bounded routing tree, while Jia’s distributed
algorithm takes O(2 M) messaging overhead to construct a tree for M destinations.

Tree-based algorithms have the advantages of achieving efficient bandwidth and delay
optimization in stable networks. However, the single tree approaches [13] can be vulnerable
to churns. If an intermediate node leaves or fails, its descendant nodes will be affected.
Repair delays are hence incurred by relocation, rearrangement of the topology. Mesh-based
approaches have been proposed as a promising alternative to address the issue. SplitStream
[10], for example, splits the stream into k stripes, and builds a separate tree for each stripe
over Scribe [9]. The key is to have each node acts as an interior node in at most one tree so
that the overlay becomes robust to node leaves and failures with proper content encodings.
Bullet [35], as another example, uses meshes to distribute disjoint data sets to various
points, and designs a decentralized algorithm for nodes to locate and retrieve missing data.

Receiver-side delay The delay incurred at the receiver side (Dreceiver) usually includes three
parts: the loss concealment overhead, the receiver buffering time and the time incurred on
audio/video 2D decoding and 3D rendering. The 2D decoding and 3D rendering can
usually be achieved in real time, and their delays are very small [75].

Different loss concealment schemes have different delay overhead. For instance, when
we conceal audio packet losses using piggybacking approach [61], the maximum delay
depends on the piggybacking degree which is the number of previous audio frames
piggybacked in the current frame. But when we use packet interleaving to conceal losses,
the delay is decided based upon the number of interleaving sub-frame partitions for each
frame [72]. Video frames are usually concealed by simply replicating previous frames
whose latency is negligible, or by motion vector estimation which requires huge
computation resources [3].

118 Multimed Tools Appl (2011) 51:99–132

The playout scheduling with jitter control decides the end-to-end delay De2e by adjusting
the receiver buffering time Dreceiver. Most of the previous studies focused on the audio
buffering, and the video buffer were usually adapted to synchronize to the audio signals
(see “Multi-stream synchronization delay management”). The audio scheduling algorithms
can be broadly divided into three categories.

The non-adaptive playout scheduling scheme [57] estimates the average one-way
network delay Dnet and its variation v, and chooses the playout buffer with the estimated
one-way end-to-end delay De2e using following equation:

De2e ¼ Dnet þ 4v:

Both Dnet and v can be obtained by sending probing packets from each other clients in
the conference. This scheme is not able to adapt to Internet dynamics because of the fixed
buffer size determined at the start of the conference.

On the other hand, the adaptive playout scheduling scheme [6, 45, 51] is able to
dynamically adapt the buffer size during the DIME session, based on the feedback and
gained statistics of the delay, jitter and losses from other clients. A simple implementation is
to collect statistics at each client with regard to packets sent from each of the speakers [61].
Let F be the CDF of the network delay Dnet between a speaker-listener pair in the past time
window (e.g., 10 sec), De2e can be computed from the history window:

De2e ¼ FðDnetÞ þ DT

Here ΔT is the additional allowance for the network jitter.
Although different adaptive playout scheduling schemes have all been proved to be

successful under Internet dynamics, their implementations are very difficult. In addition, that
the jitter buffer size cannot be changed within a talkspurt degrades the overall effectiveness.

Liang et al. [39] proposes the Time Modification Scheme (TSM) scheme, of which the
main purpose is to further increase or decrease Dreceiver without changing De2e. TSM
stretches or compresses speech frames at the very beginning and the end of a talkspurt to
reduce listeners’ perception annoyance. Therefore, it has small effects on the jitter buffer size.

Multi-stream synchronization delay management The synchronization of correlated multi-
streams (bundle of streams) requires collaborative delay management at all three locations
(sender-side, network, and receiver-side). When the synchronization needs to be done on
only one audio and one video stream, we can achieve lip synchronization by scheduling the
video playback time according to the audio reference [40, 46] or the audio playout time (by
warping the audio signals) according to the video reference [19]. In distributed multimedia
environments, we can synchronize multi-streams at the sender side by multicasting a global
timestamp or at the receiver side by applying Precision Time Protocol (PTP) [27]. When
multiple correlated audio and video streams need to be synchronized in a DIME,
synchronization becomes a challenging task. Due to different protocols and adaptation
algorithms used for different streams, the individual streams of a bundle may arrive at a receiver
at different time. The system may no longer be real-time if we try to synchronize all streams.

To solve this issue, Huang et al. [25] propose the TSync framework. The authors
propose the concept of dominant stream(s) within the bundle,6 which are the reference
stream(s) used for real-time synchronization. The re-synchronization of a bundle relies on
timed synchronization points throughout the transmission to avoid synchronization skew

6 Bundle is defined as a group of correlated streams/flows originated at one site.

Multimed Tools Appl (2011) 51:99–132 119

propagations and degradations. TSync also adapts audio playout buffer to synchronize to
video frames based on the previous study in [48]. TSync provides the following features:

& As it is impossible for an audio stream to synchronize to multiple video streams, TSync
uses the concept of a dominant stream which has the largest contribution factor (CF) to
the users view and represents the reference stream for other streams in the bundle for
overall synchronization. The CFi of each i-th video stream (vsi) can be computed as
discussed in “Multiple Flows Adaptive Bandwidth Management”.

& To allow synchronous capturing of multiple video frames (i.e., to generate a video
macro-frame as we discussed in “Adaptation-based bandwidth management”) at the
capturing tier (sender-side), TSync uses a video trigger server. The video trigger server
gets the feedback from cameras when cameras capture their current frame, and sends a
hardware beat signal to all cameras at the sender-site when cameras become ready to
capture the next frame. In order to facilitate audio-visual synchronization, a small soft
packet piggybacks onto a global timestamp and it is sent to all cameras as well as the
microphone component at the sender-side (capturing tier).

& To reduce the sync skew caused by inadequate Internet network bandwidth availability,
TSync relies on a coordinated resource allocation scheme for the multiple audio and
video streams under different network topology.

& To reduce the audio-visual sync skew at the rendering tier, TSync allows audio buffer
adaptation based upon the average 3D video rendering time and an empirical 80th
percentile audio-visual arrival skew (the arrival time skew between the last frame of a
video macro-frame and the audio frame with the same timestamp) at the receiver. The
audio buffer is adapted during silence periods and a minimal audio buffering time of 60
ms is guaranteed to smooth the Internet jitters.

& To correct sync skew, and prevent sync skew propagation and further degradation,
TSync applies Timed Synchronization Points (TSP) to the video macro-frames at both
the capturing and rendering tiers. The basic idea is that at each TSP, the system waits
(waiting implemented as a barrier) to release a video macro-frame until it receives all
frames from the macro-frame or until it receives some frames of the macro-frame within
a given bounded time, whichever is earlier. If a frame out of its macro-frame is missing,
i.e., macro-frame is incomplete at the release, TSync system replicates the previous
correctly received frame belonging to the same video stream.

& When a user requests a view change at the rendering tier (receiver-side), the dominant
stream can change to another video stream which may not be available. In TSync, this
issue is addressed by delaying the response7 until resynchronization of audio signal
with the new dominant video stream happens.

4 Discussion

Different resource management algorithms impose different guarantees on QoS metrics.
Hence careful selection and adaptation of these algorithms must be made depending on
application requirements. For example, the multi-player immersive gaming is more

7 By delaying the response, we mean that during the resynchronization phase when bringing in a new
dominant stream, DIME and its TSync service play the old video streams with the new audio until new video
streams corresponding to the new view arrive. This action will cause a delayed synchronized response to the
user’s view change.

120 Multimed Tools Appl (2011) 51:99–132

sensitive to delays whereas synchronized immersive dancing [63] is more sensitive to
synchronization or skew across multiple video streams. In this section, we briefly present a
sample DIME architecture, called TEEVE (Tele-immersive Environment for Everybody)
[79], to show how some of the QoS and resource management algorithms are applied
depending on application requirements.

TEEVE is a distributed 3D tele-immersive (3DTI) system that has been under
development jointly at University of California at Berkeley and University of Illinois at
Urbana-Champaign since 2004. The system is designed with multiple cameras and displays
at each site (see Fig. 1) to capture 3D full-body human motion in geographically distributed
sender-sites, aggregate the correlated video data (bundle) at each sender-site, send the
bundles across the Internet, and render the bundles into a joint cyber-space at each receiver-
site. Through the shared visual context, the participants can interact or collaborate in real
time (see Fig. 9). TEEVE is meant to support real-time collaborative physical activities
among multiple geographically distributed sites.

The TEEVE system is built upon Commercial Off-The-Shelf (COTS) computing and
networking infrastructures. There exist other tele-immersive environments with very
special purpose real-time operating systems, leased networks, or other special purpose and
expensive hardware [15, Otto04, 3]. But the cost is too high for the system to work for
“everybody”. TEEVE goal is to build the system with off-the-shelf infrastructures, so that it
can be easily and widely deployed. The lower end COTS-based 2D video-mediated
collaborative environments such as Skype, NetMeeting [47, 65] are mostly designed for
desktop uses (e.g., conferencing), hence minimal number of cameras are employed only to
capture the upper bodies or the faces. The higher end 2D video-mediated collaborative
environments such as Cisco Telepresence, HP’s Halo system [14, 22] are designed as
conferencing rooms with multiple cameras, but are employed to capture the upper bodies or
faces for efficient business meeting purposes. Our goal is to broaden the application of the
tele-immersive technology by supporting full-body capturing of the participant. The
complete 3D representations of human body allow for a wide range of physical activities
such as dancing, sports, and medical rehabilitation [36, 63, 76].

In the next subsections 4.1, 4.2 and 4.3 we will discuss the QoS and CPU/network
management for TEEVE. It is clear that since TEEVE resides on COTS components
(general purpose OS and Internet protocols), the primary QoS and resource management
will be adaptive since we cannot rely on any real time enforcements in a single OS and
inside of the network via Int-Serv or Diff-Serv.

a b

Fig. 9 a Logical architecture, and b physical setup of TEEVE with 3 sites

Multimed Tools Appl (2011) 51:99–132 121

4.1 CPU management in TEEVE

The TEEVE system does not have any CPU management support at the LN and RP nodes
for a single session. The TEEVE overlay system services utilize the best effort CPU
scheduling of the Microsoft Windows and Linux OS systems. However, at the RP nodes, in
order to support multiple simultaneous sessions (e.g. TI rooms), the TEEVE system uses
the concept of real-time virtualization. Virtualization is a powerful technique that allows
efficient multiplexing of resources to run multiple virtual machines in a single physical
machine. Each RP service gateway in the TI system contains multiple Virtual Machines
running on top of a Virtual Machine Monitor (VMM). These Virtual Machines run
individual TEEVE sessions and are divided in two types: Privileged Monitoring Virtual
Machines and User Virtual Machines. The first type of Virtual Machines contains
monitoring and management tools required for the administration of the TI site and hence
requires best-effort scheduling. The second type of VM’s contains all the necessary
disseminating infrastructures required to host one session and requires real-time scheduling.

To support this mixed requirement, TEEVE adapts Janus [58], a soft real-time cross
layer CPU scheduling architecture as discussed in Section 3.1.2. This architecture allows
services residing in each Virtual Machine to efficiently obtain reservation-based CPU
guarantees within the VM and across VM’s in the system, based on their individual QoS
requirements. As shown in [58], it performs considerably better than XEN credit scheduler
in terms of deadline guarantees, predictability and jitters among macro-frames.

4.2 Bandwidth management in TEEVE

TEEVE requires huge amounts of bandwidth for its multi-stream transmission. Streams are
correlated since they come from multiple cameras capturing the same physical space from
different viewpoints. Hence, TEEVE uses view-based bandwidth management [80] as
discussed in “Multiple Flows Adaptive Bandwidth Management”. that best serves the
requirements in this multi-stream domain. This bandwidth management approach efficiently
allocates available bandwidth while inducing low or no network congestion.

This scheme uses view-based bandwidth allocation, i.e., assigns more bandwidth to
flows, which contribute more to the user’s view than others. Figure 10 shows the impact of
view-based bandwidth allocation (priority scheme) versus bandwidth management that does
not differentiate among flows in the bundle (non-priority scheme). The impact of the
bandwidth management is measured by the Peak-Signal-Noise Ratio (PSNR), shown at the
y-axis, of the overall joint macro-frame over time, shown at the x-axis (the time is
expressed through macro-frame numbers as they are being played out). The results show an
experiment [80] with 123D video streams in a bundle streaming between Illinois and
Berkeley, and over time the amount of available network bandwidth (hence the target frame
size TFS can get allocated less bits) has been gradually throttled. The graph clearly shows
three major areas of interest: (a) area between 1-450 macro-frames, where there is plenty of
network bandwidth (TFS is high) allocated, shows that each frame of each flow in the
bundle has high PSNR, independent of the priority or non-priority scheme, and view-based
differentiation of streams is not needed for bandwidth management, (b) area between 451–
1000 macro-frames, where the network bandwidth (TFS decreases) gradually decreased,
shows that view-based differentiation is needed and the priority scheme gets higher PSNR
than non-priority scheme under the same certain network bandwidth availability, (c) area
between 1001–1600 macro-frames, where low network bandwidth availability (TFS is low)
is provided, shows that the view-differentiation does not help (i.e., PSNR of macro-frames

122 Multimed Tools Appl (2011) 51:99–132

with priority and non-priority schemes are approximately the same) since at this point the
system gets to a state with only 1–2 streams per bundle and with very low frame rate, hence
there is not much information to differentiate over.

4.3 Delay management and synchronization in TEEVE

TEEVE system acquires delays in all three locations of the end-to-end system, the sender-
side, network and receiver-side as shown in Fig. 11. Capturing devices (3D cameras) are the
main sources of sender-side delays (Dsender) in TEEVE. The camera threads grab images
from the camera buffers, and perform some pre-processing including rectification, moment
computation, background subtraction, and edge extraction. After pre-processing, the images
are copied to the computing threads. Instead of dividing the images to only two halves as in
the original algorithm, TEEVE divide the images into multiple pieces for computing for
parallel processing. It uses mesh-based 3D reconstruction [70] with reconstruction time

Fig. 11 End-to-end delay for TEEVE system

Fig. 10 Overall rendered quality for priority and non-priority bandwidth management schemes in TEEVE [80]

Multimed Tools Appl (2011) 51:99–132 123

under 30ms. It offers a significant improvement of reconstruction time over point-could
based approach used before in [75].

The renderer at the receiver-side selects a subset of most contributing streams to the
user-selected view by computing the contribution factor CF of each stream with reference
to the given user view [75] as discussed in “Multiple Flows Adaptive Bandwidth
Management” and “Multi-stream synchronization delay management”. TEEVE supports a
selection of dynamic number of streams with CF larger than a threshold THimp with THimp=
0, thus the selected streams cover 180° of the scene and the receiver-side delay (Dreceiver)
incurred by 3D video rendering is about 37ms.

In TEEVE, the network delay (Dnet) includes the time interval from the RP (gateway)
starting time of sending the first frame 1 belonging to a macro-frame until the end time of
receiving the last frame N belonging to the same macro-frame as shown in Fig. 11.

The end-to-end delay (De2e) of a macro-frame Fj includes then the sum of sender-side
delays (Dsender), network delays (Dnet) and receiver-side delays (Dreceiver). The measure-
ments between Illinois and Berkeley indicate that the end-to-end delay is around 200ms
[Yang2010] as shown Fig. 12. The Fig. 12 shows two curves representing (a) a scheme with
frames 1..N. of a macro-frame Fj are being scheduled from cameras using a token-ring
scheme (traffic shaping occurs), and (b) a scheme with frames 1..N of a macro-frame Fj are
being scheduled from cameras as soon as possible (no traffic shaping). We can see that
traffic shaping helps the end-to-end delay and TEEVE achieves an end-to-end delay of 200
ms versus around 250–270 ms without traffic shaping. Note that this delay was sufficient to
conduct extensive tele-immersive dance and sports activities [63, 76].

The current version of TEEVE includes one audio stream and multiple video streams,
and the audio stream needs to be synchronized with multiple highly correlated video
streams capturing different views of the same scene at different positions. Because of the
multi-tier architecture in 3DTI, a sync skew between any two streams in one tier can be
propagated to the next tier. Moreover, users can change views at any time [80]; hence a
sync skew can be introduced between the audio streams and the new view. To solve these

Fig. 12 Marco-frame end-to-end delay between Illinois and Berkeley [79]

124 Multimed Tools Appl (2011) 51:99–132

issues, TEEVE adapts TSync [25], also discussed in “Multi-stream synchronization delay
management”, which can effectively minimize the multi-stream multi-source sync skews in
TEEVE over Internet. It performs cooperative frame rate allocation with consideration of
this synchronization issue. It can successfully bind the audio-visual sync skew within a
recommended maximum 80 ms threshold [66].

5 Conclusion

Advanced DIME systems are emerging and with them new challenges such as (a) how to
deal with large scale of devices deployed in them and (b) how to achieve real-time
interactions and guarantees in distributed settings are also emerging. Solutions towards the
above mentioned challenges lie in deploying appropriate QoS and resource management
algorithms, protocols, and approaches. In this paper, we have surveyed existing DIME-
relevant QoS and resource management techniques for two important resources, CPU
computing and networking resources. Their appropriate coordination and organization leads
the DIME performance improvement, hence towards interactivity and scale. The survey
also provides taxonomy and comparison of the various QoS/resource management
techniques since we expect that the future DIMEs will vary greatly in their capabilities,
demands and setups.

We have presented one futuristic DIME system, the TEEVE 3DTI system, which
has utilized various resource management techniques to understand performance
limits we are facing when deploying adaptive QoS and resource management
techniques over COTS components. The results clearly show that these types of
DIME 3DTI systems are feasible for applications such as Tele-immersive Dance (TED)
[63].

In the future, we expect that as more advanced DIME systems emerge, (a) COTS
components get faster using some of the surveyed QoS and resource management
techniques (i.e., techniques that are currently in research systems will move into the general
purpose systems to allow for broad DIME usage), (b) hardware components, such as
accelerators, compression cards, synchronizers, multi-GPUs, multi-core CPUs, become part
of DIMEs in cost-effective manner, (c) Int-Serv and/or Diff-Serv like network services
become available over different sizes of networks (LANs, MANs, WANs), and (d)
advanced QoS and resource techniques and abstractions emerge to satisfy the new DIME
demands.

References

1. Agarwal V, Rejaie R (2005) Adaptive multi-source streaming in heterogeneous peer-to-peer networks.
In: Proceedings of the 12th Annual Multimedia Computing and Networking (MMCN ‘05)

2. Antoniades D, Athanatos M, Papagiannakis A, Markatos E, Dovrolis C (2006) Available bandwidth
measurement as simple as running wget. In: Proceedings of Passive and Active Measurement (PAM’06)

3. Baccichet P, Bagni D, Chimienti A, Pezzoni L, Rovati F (2005) Frame concealment for H. 264/AVC
decoders. IEEE Trans Consum Electron 51:227–233

4. Baker H, Bhatti N, Tanguay D, Sobel I, Gelb D, Goss M, Culbertson W, Malzbender T (2005)
Understanding performance in Coliseum, an immersive videoconferencing system. ACM Trans
Multimed Comput Commun Appl, vol 1

5. Banachowski SA, Brandt SA (2002) The BEST scheduler for integrated processing of best-effort and
soft real-time processing. In: Proceedings of Multimedia Computing and Networking (MMCN’02)

Multimed Tools Appl (2011) 51:99–132 125

6. Boutremans C, Boudec JYL (2003) Adaptive joint playout buffer and fec adjustment for internet
telephony. In: Proceedings of 22nd Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM’03), pp 652–662

7. Braden R, Zhang L, Berson S, Herzog S, Jamin S (1997) Resource ReSerVation Protocol (RSVP)—
Version 1 Functional Specification, RFC 2205

8. Brandt SA, Banachowski S, Lin C, Bisson T (2003) Dynamic integrated scheduling of hard real-time,
soft real-time and non-real-time processes. In: Proceedings of the 24th IEEE Real-Time Systems
Symposium (RTSS’03), pp 396–407

9. Castro M, Druschel P, Kermarrec A-M, Rowstron AIT (2002) Scribe: a large-scale and decentralized
application-level multicast infrastructure. IEEE J on Selected Areas in Communications (SAC’02) 20
(8):1489–1499

10. Castro DM, Kermarrec P, Nandi A-M, Rowstron A, Singh A (2003) SplitStream: high-bandwidth
multicast in cooperative environments. J Operating Systems Review 37(5):298–313

11. Chang S, Zhong D, Kumar R (2001) Real-time content-based adaptive streaming of sports videos.
Proceedings of IEEE Workshop on Content-based Access of Image and Video Libraries, In

12. Chu H-H, Nahrstedt K (1999) CPU service classes for multimedia applications. In: Proceedings of IEEE
International Conference on Multimedia Computing and Systems (ICMCS'99), vol 1

13. Chu Y, Rao SG, Zhang H (2000) A case for end system multicast. In: Proceedings of ACM Annual
Conference of the ACM Special Interest Group on Measurement and Modeling of Computer Systems
(SIGMETRICS’00)

14. Cisco telepresence. http://www.Cisco.com/TelePresence
15. Daniilidis F, Mulligan J, Mckendal R, Majumder A, Kamberova G, Schid D, Bajcsy R, Fuchs H (1999)

Towards the holodeck: an initial testbed for real-time 3D teleimmersion. In: Proceedings of Annual
Conference of the ACM Special Interest Group on Computer Graphics and Interactive Techniques
(SIGGRAPH’99)

16. Deering S (1988) Multicast routing in internetworks and extended LANs. In: Proceedings of Annual
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM’88), pp 55–64

17. Fernandez-Escribano G, Kalva H, Cuenca P, Orozco-Barbosa L (2006) Speeding-up the macroblock
partition mode decision in MPEG-2/H.264 transcoding. In: Proceedings of IEEE Conference on Image
Processing (ICIP’06), pp 869–872

18. Gautier L, Diot C (1998) Design and evaluation of mimaze, a multi-player game on the internet. In:
Proceedings of IEEE Multimedia Systems Conference, pp 233–236

19. Goldenstein S (1999) Time warping of audio signals. In: Proceedings of IEEE Conference on Computer
Graphics, pp 52–57

20. Hellerstein JL (1993) Achieving service rate objectives with decay usage scheduling. IEEE Trans Softw
Eng

21. Hosseini M, Georganas ND (2003) Design of a multi-sender 3D videoconferencing application over an
end system multicast protocol. In: Proceedings of the eleventh ACM international conference on
Multimedia (MM’03)

22. HP Halo System http://h71028.www7.hp.com/enterprise/us/en/halo/index.html
23. Huang C-M, Lin C-W, Yang C-C, Chang C-H, Ku H-H (2009) An SVC-MDC video coding scheme

using the multi-core parallel programming paradigm for P2P video streaming. In: Proceedings of IEEE
International Conference on Computer Science and Application (ICCSA’09)

24. Huang Y-L, Shen Y-C, Wu J-L (2009) Scalable computation for spatially scalable video coding using
NVIDIA CUDA and multi-core CPU. In: Proceedings of ACM Multimedia (MM’09)

25. Huang Z, Wu W, Nahrstedt K, Arefin A, Rivas R (2010) TSync: a new synchronization framework for
multi-site 3D tele-immersion. In: Proceedings of International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV’10)

26. Hwang FK, Richards DS (1992) Steiner tree problems. Networks 22:55–89
27. IEEE 1588 standard (2008) Precise time synchronization as the basis for real time applications in

automation.
28. ITU-G.114 (2003) One-way transmission time.
29. Jain M, Dovrolis C (2002) Pathload: a measurement tool for end-to-end available bandwidth. In:

Proceedings of the 3rd Passive and Active Measurements (PAM ’02)
30. Jain M, Dovrolis C (2003) End-to-end available bandwidth: measurement methodology, dynamics, and

relation with TCP throughput. IEEE/ACM Trans Netw
31. Jeffay K, Smith FD, Moorthy A, Anderson J (1998) Proportional share scheduling of operating system

services for real-time applications. In: Proceedings of Real-Time Systems Symposium (RTSS’98), vol. 0
32. Jia X (1998) A distributed algorithm of delay-bounded multicast routing for multimedia applications in

wide area networks. IEEE/ACM Transaction on Networking 6:828–837

126 Multimed Tools Appl (2011) 51:99–132

http://www.Cisco.com/TelePresence
http://h71028.www7.hp.com/enterprise/us/en/halo/index.html

33. Jones MB, Leach PJ, Draves RP, Barrera I (1995) Modular real-time resource management in the rialto
operating system. In: Proceedings of the Fifth Workshop on Hot Topics in Operating Systems
(HotOS’95)

34. Kompella VP, Pasquale JC, Polyzos GC (1993) Multicast routing for multimedia communication. IEEE/
ACM Trans Netw

35. Kostic D, Rodriguez A, Albrecht J, Vahdat A (2003) Bullet: high bandwidth data dissemination using an
overlay mesh. ACM SIGOPS Operating Systems Review 3(5)

36. Kurillo G, Vasudevan R, Lobaton E, Bajcsy E (2008) A framework for collaborative real-time 3D
teleimmersion in a geographically distributed environment. In: Proceedings of IEEE International
Symposium on Multimedia (ISM’08)

37. Lee H (1997) A proportional-share scheduler for multimedia applications. In: Proceedings on
International Conference on Multimedia Computing and Systems (ICMCS’97)

38. Lee X, Zhang Y (1996) A fast hierarchical motion-compensation scheme for video coding using
block feature matching. IEEE Transaction on Circuits and Systems for Video Technology 6:627–
635

39. Liang YJ, Faber N, Girod B (2003) Adaptive playout scheduling and loss concealment for voice
communication over IP networks. IEEE Transaction on Multimedia 5(4):532–543

40. Little T (1993) A framework for synchronous delivery of time-dependent multimedia data. Multimedia
Systems 1(2):87–94

41. Liu T, Choudary C (2004) Real-time content analysis and adaptive transmission of lecture videos for
mobile applications. In: Proceedings of the 12th annual ACM international conference on Multimedia
(MM’04), pp 400–403

42. Liu L-K, Feig E (1996) A block-based gradient descent search algorithm and block motion estimation in
video coding. IEEE Transaction on Circuits and Systems for Video Technology 6(4):419–421

43. Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard real-time
environment. J ACM 20(1):46–61

44. Liu T, Nelakuditi S (2004) Disruption-tolerant content-aware video streaming. In: Proceedings of ACM
Multimedia (MM’04)

45. Liu J, Niu Z (2004) An adaptive receiver buffer adjust algorithm for VoIP applications considering voice
characters. In: Proceedings of 10th Asia-Pacific Conference on Communications and 5th International
Symposium on Multi-Dimensional Mobile Communication, pp 597–601

46. Liu H, Zarki M (2006) An adaptive delay and synchronization control scheme for Wi-Fi based audio/
video conferencing. Springer Wireless Networks 12(4):511–522

47. Microsoft NetMeeting, http://www.microsoft.com.
48. Nahrstedt K, Qiao L (1997) Stability and adaptation control for lip synchronization skews. Technical

Report, University of Illinois
49. Nahrstedt K, Steinmetz R (1995) Resource management in multimedia systems. IEEE Computer 28

(5):52–65
50. Nahrstedt K, Chu H, Narayan S (1998) QoS-aware resource management for distributed multimedia

applications. J on High-Speed Networking 8(3):227–255
51. Narbutt M, Kelly A, Murphy L, Perry P (2005) Adaptive VoIP playout scheduling: assessing user

satisfaction. IEEE Internet Computing 9(4):28–34
52. Nguyen H, Rivas R, Nahrstedt K (2009) iDSRT: Integrated dynamic soft real-time architecture for

critical infrastructure data delivery over wlan. In: Proceedings of International ICST conference on
Heterogeneous Networking for Quality, Reliability, Security, and Robustness (QShine’09)

53. Nichols K, Blake S, Baker F, Black D (1998) Definition of the differentiated services field (DS Field) in
the IPv4 and IPv6 headers, RFC 2474

54. Nieh J, Lam MS (2003) A smart scheduler for multimedia applications. ACM Trans Computer Systems
21(2):117–163

55. POSIX (1992) Realtime extension for portable operating systems (posix 1003.4). Technical Report
56. Rajkumar R, Juvva K, Molano A, Oikawa S (1998) Resource kernels: A resource-centric approach to

real-time and multimedia systems. In: Proceedings of the SPIE/ACM Conference on Multimedia
Computing and Networking (MCN’98), pp 150–164

57. Ramjee R, Kurose J, Towsley D, Schulzrinne H (2004) Adaptive playout mechanisms for packetized
audio applications in wide-area networks. Proceedings of 13th IEEE Annual Joint Conf on Networking
for Global Communication (GLOBECOM’04) 2:680–688

58. Rivas R, Arefin A, Nahrstedt K (2010) Janus: a cross-layer soft real-time architecture for virtualization.
In: Proceedings of the 4th International Workshop on Virtualization Technologies in Distributed
Computing (VTDC’10)

59. Russinovich M (2007) Inside the windows vista kernel: Part 1. Technet Magazine

Multimed Tools Appl (2011) 51:99–132 127

http://www.microsoft.com

60. Saroiu S, Gummadi P, Gribble S (2002) SProbe: a fast technique for measuring bottleneck bandwidth in
uncooperative environments. In: Proceedings of IEEE International Conference on Computer
Communications (INFOCOM’02)

61. Sat B, Huang Z, Wah BW (2007) The design of a multi-party VoIP conferencing system over the
internet. In: Proceedings of IEEE International Symposium on Multimedia (ISM’07)

62. Savage S (1999) Sting: a TCP-based network measurement tool. In: Proceedings of USENIX
Symposium on Internet Technologies and Systems (SITS’99)

63. Sheppard R, Kamali M, Rivas R, Tamai M, Yang Z, Wu W, Nahrstedt K (2008) Advancing interactive
collaborative mediums through tele-immersive dance (TED): a symbiotic creativity and design
environment for art and computer science. In: Proceedings of ACM International Conference on
Multimedia (MM’08)

64. Shin I, Lee I (2003) Periodic resource model for compositional real-time guarantees. In: Proceedings of
the 24th IEEE International Real-Time Systems Symposium (RTSS’03)

65. Skype. http://www.skype.com
66. Steinmetz R (1996) Human perception of jitter and media synchronization. IEEE Journal on Selected

Areas in Communications 14(1):61–72
67. Stoica I, Abdel-Wahab H (1995) Earliest eligible virtual deadline first: A flexible and accurate

mechanism for proportional share resource allocation. Old Dominion University, Technical Report
68. Tham JY, Ranganath S, Ranganath M, Kassim AA (1998) A novel unrestricted center biased diamond

search algorithm for block motion estimation. IEEE Transaction on Circuits and Systems for Video
Technology 8(4):369–377

69. Tommasi F, Molendini S (2000) Some extensions to enhance the scalability of the RSVP protocol.
Internet Draft

70. Vasudevan R, Lobaton E, Kurillo G, Bajcsy R et al (2010) A methodology for remote virtual interaction
in teleimmersive environments. In: Proceedings of the first annual ACM SIGMM Conference on
Multimedia Systems (MMSys’10), pp 281–292

71. Vickers BJ, Albuquerque C, Suda T (2000) Source-adaptive multilayered multicast algorithms for real-
time video distribution. IEEE/ACM Transaction of Network 8(6):720–733

72. Wah BW, Lin D (1999) Transformation-based reconstruction for real-time voice transmissions over the
Internet. IEEE Transaction on Multimedia 1(4):342–351

73. Waldspurger C (1995) Lottery and stride scheduling: Flexible proportional-share resource management.
Dissertation, MIT

74. Wang L, Terzis A, Zhang L (1999) RSVP refresh overhead reduction by state compression, Internet
Draft

75. Wu W, Yang Z, Nahrstedt K (2008) Implementing a distributed 3D tele-immersive system. In:
Proceedings of IEEE International Symposium on Multimedia (ISM’08)

76. Wu W, Yang Z, Nahrstedt K (2008) A study of visual context representation and control for remote sport
learning tasks. In: Proceedings of AACE World Conference on Educational Multimedia, Hypermedia
and Telecommunications (ED-MEDIA’08)

77. Wu W, Arefin A, Rivas R, Yang Z, Sheppard R, Nahrstedt K (2009) Quality of experience in distributed
interactive multimedia environments: Toward a theoretical framework. In: Proceedings of ACM
Multimedia (MM’09)

78. Xin J, Vetro A, Sun H (2004) Efficient macroblock coding-mode decision for H.264/AVC video coding.
In: Proceedings of Picture Coding Symposium

79. Yang Z, Cui Y, Yu B, Liang J, Nahrstedt K, Jung SH, Bajscy R (2005) TEEVE: The next generation
architecture for tele-immersive environments. In: Proceedings of IEEE International Symposium on
Multimedia (ISM’05)

80. Yang Z, Yu B, Nahrstedt K, Bajcsy R (2006) A Multi- stream adaptation framework for bandwidth
management in 3D tele- immersion. In: Proceedings of International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV’06)

81. Yeung A, Liew SC (1997) Multiplexing video track using frame-skipping aggregation technique.
Proceedings of International Conference on Image Processing (ICIP’97) 1:334–337

82. Zhu Q, Garcia-Luna-Aceves J (1995) A source-based algorithm for delay-constrained minimum-cost
multicasting. In: Proceedings of IEEE International Conference on Computer Communications
(INFOCOM’95)

128 Multimed Tools Appl (2011) 51:99–132

http://www.skype.com

Klara Nahrstedt is a full professor at the University of Illinois at Urbana-Champaign, Computer Science
Department. Her research interests are directed toward Multimedia Distributed Systems and Networking, Peer-
to-peer Streaming Systems, Quality of Service (QoS) and Resource Management in Internet and Mobile
Wireless Networks, Real-Time Security in Wireless Networks, and Tele-Immersive Systems. She is the recipient
of the Early NSF Career Award, the Junior Xerox Award, the IEEE Communication Society Leonard Abraham
Award for Research Achievements, the University Scholar Award (2008–2009) and the Humboldt Research
Award. She was the editor-in-chief of the ACM/Springer Multimedia Systems Journal (2000–2007), associate
editor of ACM Transactions on Multimedia Computing, Communications and Applications since 2005,
associate editor of IEEE Transactions on Information Forensics & Security since 2005, general co-chair of ACM
Multimedia 2006, general chair of ACM NOSSDAV 2007, general chair of IEEE PerCom 2009, and Ralph and
Catherine Fisher Professor (2002–2010). She was elected to serve as the chair of the ACM SIG Multimedia
(2007–2011). Klara Nahrstedt received her BA in mathematics from Humboldt University, Berlin, in 1984, and
M.Sc. degree in numerical analysis from the same university in 1985. She was a research scientist in the Institute
for Informatik in Berlin until 1990. In 1995 she received her PhD from the University of Pennsylvania in the
Department of Computer and Information Science. She is the member of ACM and IEEE Fellow.

Ahsan Arefin is a PhD student in Computer Science at the University of Illinois at Urbana-Champaign. His
research interests include Management and Analysis of Large-Scale Distributed Systems focusing Distributed
Multimedia Systems, Quality of Service Management, Large-scale Monitoring and Data Mining. He is
currently a member of SIGMM educational committee. Ahsan Arefin received his B.Sc. in Computer Science
and Engineering from Bangladesh University of Engineering and Technology (BUET), Bangladesh in 2006.
He received various scholarships including merit list from Government of Bangladesh and awards for
programming and design competitions during his graduate and undergraduate studies.

Multimed Tools Appl (2011) 51:99–132 129

Raoul Rivas is a PhD student in Computer Science at University of Illinois at Urbana-Champaign. His
research interests are in the area of Operating Systems and Multimedia Systems including Virtualization
Techniques, Quality of Service, Soft-Real-time Scheduling, Power Management and Heterogeneous
Architectures. He has received various scholarships including a merit based scholarship from Secretaría de
Educación (government board of education) in Mexico and the Intel Undergraduate Research Scholarship in
2006. Raoul Rivas received a B.S. in Computer Science from the University of Illinois at Urbana-Champaign
in 2007, and a B.S in Systems Engineering from Universidad Panamericana in Mexico City, Mexico in 2005.

Pooja Agarwal is currently a PhD student in Computer Science at University of Urbana-Champaign. She
received her undergraduate degree BTech in Computer Science and Engineering from Manipal Institute of
Technology, India. Before joining to PhD, she worked as an intern at Indian Institute of Technology at Kanpur,
India. Her research interests include different networking and overlay aspects in Distributed Interactive Multimedia
Systems focusing on Bandwidth Management, Delay Management and Peer-to-peer Streaming.

130 Multimed Tools Appl (2011) 51:99–132

Zixia Huang is currently a PhD candidate at University of Illinois at Urbana-Champaign, Computer Science
department. His research areas include Multimedia Streaming, Cloud Computing, Mobile Networks and
Parallel Computing. He received his bachelor degree in Electronics and Information Engineering from
Shanghai Jiao Tong University in 2006 and his M.Sc. degree in electrical and computer engineering from
University of Illinois in 2009. He has been the recipient of several awards including the Global Electric (GE)
Scholarship and the Pan Wen-Yuan Student Award.

Wanmin Wu completed her undergraduate studies at Zhejiang University in 2004. Her research interests
include Multimedia Processing and Communication, Distributed Systems, Human-Computer Interface, and
Tele-Immersion. She is currently a PhD student in Computer Science at University of Illinois at Urbana-
Champaign. She was selected for IBM Watson Emerging Leaders in Multimedia in 2008. She has received
various scholarships and fellowships including Yee Memorial Fund Fellowship for year 2010–2011.

Multimed Tools Appl (2011) 51:99–132 131

Zhenyu Yang is working as an assistant professor in school of Computing and Information Sciences at
Florida International University. His research interests include Networking and Distributed systems with a
focus on Communicative, Collaborative and Multimedia Systems involving Quality-of-Service Management,
Overlay and Peer-to-peer Networks, Content Delivery Network, Wireless Networks, 3D Collaborative
Environments, Ubiquitous Computing, Human-Computer Interface/Interaction, and Development of
Multimedia Applications particularly to promote collaborative and interdisciplinary research. He completed
his PhD from the department of Computer Science at University of Illinois at Urbana-Champaign.

132 Multimed Tools Appl (2011) 51:99–132

	QoS and resource management in distributed interactive multimedia environments
	Abstract
	Introduction
	DIME assumptions, taxonomy and comparison criteria
	DIME assumptions
	Taxonomy of DIME resources
	DIME evaluation/comparison criteria

	DIME resource management
	CPU resource management
	Best effort schedulers
	Real-time schedulers

	Network resource management
	Bandwidth management
	Delay management

	Discussion
	CPU management in TEEVE
	Bandwidth management in TEEVE
	Delay management and synchronization in TEEVE

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

