
SAS Kernel: Streaming as a Service Kernel for Correlated
Multi-Streaming

Pooja Agarwal, Raoul Rivas, Wanmin Wu, Ahsan Arefin, Zixia Huang, Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois, United States

{pagarwl, trivas, wwu23, marefin2, zhuang21, klara}@illinois.edu

ABSTRACT

This paper presents a novel paradigm of Streaming as a Service

(SAS) to model correlated multi-streaming in Distributed Interac-
tive Multimedia Environments. We propose SAS Kernel, a generic,
distributed, and modular service kernel realizing SAS concept. SAS
Kernel features high flexibility by employing a configurable in-
terface to allow for input of correlated multi-streams (bundle of
streams) from diverse types of sensory devices. It is also highly
extensible by allowing user-controlled functions to be applied to
bundle of streams in runtime. Experiments with real-world appli-
cations demonstrate that the SAS Kernel incurs low overhead in
delay, CPU, and bandwidth demands.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distributed Sys-
tems—Network Operating System; D.4.7 [Operating Systems]:
Organization and Design

General Terms

Design, Measurement, Performance

Keywords

Streaming as a Service, SAS Kernel, End Device Abstraction

1. INTRODUCTION
Cyber-Physical systems using large number of sensors are fast

becoming ubiquitous. An example of multi-sensory system is Dis-
tributed Interactive Multimedia Environments (DIMEs). DIMEs al-
low real-time collaborative activities like interactive gaming, physi-
cal therapy, and sport activities across multiple, geographically dis-
tributed users. Some of the real applications include Physical Train-
ing [5], Virtual Gaming [16], and Teleimmersive Dancing [11].

DIMEs are comprised of input devices (e.g., cameras, micro-
phones, body sensors, haptic devices) and output devices (e.g., dis-
plays, speakers, actuators). DIMEs make use of service gateways
to transfer content from input devices to remote output devices over

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’11, June 1–3, 2011, Vancouver, British Columbia, Canada.
Copyright 2011 ACM 978-1-4503-0752-9/11/06 ...$10.00.

the Internet. Apart from streaming, DIME service gateways need
to provide various functionalities like overlay routing, bandwidth
management, QoS provisioning, synchronization, and monitoring.

Several architectures for streaming gateways interconnecting lo-
cal area networks like Ethernet, Bluetooth, wireless access to the
Internet exist in the literature. However, these service gateways
[9], [10], [13], [14], [15] are limited to functionalities like relay-
ing, multiplexing, translating, and managing local resources only,
which fail to satisfy the requirements of DIMEs. There are some
proprietary gateways developed at HP Halo, Cisco Telepresence,
and Technicolor, however they are tailored to cater closed applica-
tions and their internal functionalities are publicly unknown.

DIME requirements differ from those of traditional gateways as:

1. Presence of multiple correlated sensors interacting in a DIME
session requires support for large scale correlated multi-streaming

as an inherent functionality.
2. High interactivity in DIME sessions requires soft real-time

delivery of all streams.
3. Advanced QoS services across multiple spatially and tempo-

rally correlated streams need to be supported.
4. With end-devices dispersed across remote locations, distributed

resource management is important in DIMEs.
5. Lack of standard stream formats across sensors from diverse

vendors require unified interface with the end-devices.

Based on the above requirements, concepts of correlated multi-

streaming, device abstraction, and user-controlled services need to
be supported in DIMEs. Other important challenges include flexi-

bility, and scalability of DIME frameworks.
In this paper, we envision a novel paradigm, Streaming as a Ser-

vice (SAS) to model correlated multi-streaming service, where cor-
related multi-streams, also called bundle of streams are first class
objects. We propose a SAS-based, generalized, distributed ser-
vice kernel, SAS Kernel to setup, process, and control bundles of
streams. We emphasize that SAS and SAS Kernel are not limited
to just DIMEs but provide a fundamental foundation of modern
service-oriented architectures for wide range of stream-based ap-
plications (e.g., 3D Streaming).

In summary our contributions in this paper are:

1. Formalization of the SAS paradigm (see Section 2);
2. Design of the SAS Kernel with properties:

(a) Streams and bundles as first class objects (Section 3),
(b) Unified interface for diverse end-devices (Section 5.1),
(c) User-controlled runtime functions over streams and bun-

dles (Section 3 and 5.2),
(d) Integrated session and bundle management (Section 3),
(e) Extensibility of SAS components (Section 5)

3. Quantitative evaluation in a real testbed (Section 6).

81

2. STREAMING AS A SERVICE (SAS)
We propose a generalized Streaming as a Service paradigm for

platforms providing correlated soft real-time multi-streaming as the
key service. The guiding properties of SAS are as follows:

• Distributed Correlated Multi-Stream Support - DIMEs are
composed of distributed correlated multi-streams called Bun-

dle of Streams (BoS) [1] sharing high spatial and tempo-
ral correlations. These bundles interact in synchronous and
soft real-time manner. The current streaming protocols like
RTP/RTCP, SIP, RTSP do not take into account efficiently the
spatio-temporal dependencies among large sets of streams.
To deal with this, the SAS model inherently supports: (1)
large scale correlated soft real-time streaming, (2) end-to-end
session management based on media correlations [8].

• Universal Open Access - Unlike the Internet Protocols which
have become the lingua franca, there is a lack of well-agreed
formats across emerging devices like 3D cameras and mi-
crophone arrays. To overcome the problem of implementing
large sets of formats, SAS model supports universal access
policy with well-defined interfaces to the end-devices. In
SAS, varied types of streaming devices with different stan-
dards seemlessly connect and stream the data.

• User-defined Functions - SAS provides the flexibility of pro-
visioning two types of run-time functions on streams: (1)
system-defined functions like rate control, congestion con-
trol, and multi-stream synchronization, (2) user-defined func-
tions like compression, encryption, and view management.
These functions can be requested in an on-demand basis.

• Availability - It is anticipated that in the future, access to SAS
will follow "always on" paradigm, like cable modem access
is today. Thus, SAS is highly available at all times.

• Robustness - For SAS, the capability to monitor performance,
isolate faults, and automatically recover from faults is criti-
cal. The robustness of SAS comes through (1) On-demand
monitoring services with varied resolutions, (2) Fault local-
ization and easy recovery mechanism.

• Scalability - It is anticipated that larger scale of sensors will
enhance the Quality of Experience (QoE) of users. Thus,
SAS provides scalability in terms of supporting large sets of
streams. Also, extensibility of a SAS-based framework is
important to support adding new functional services as need
arises.

Thus, the goal of the SAS is to foster bundles of streams needing
correlated multi-streaming support, universal access across diverse
devices, and user-controlled runtime functions in future DIME sys-
tems. To realize the SAS paradigm, we present SAS Kernel, set
of real-time integrated services that enforce SAS properties (as out-
lined above) at runtime.

3. SAS KERNEL FRAMEWORK
In DIMEs, distributed end-devices share streams and resources

in real-time collaborative sessions. The SAS Kernel provides run-
time system for easy setup, processing, management, and access of
bundles of streams. The SAS Kernel implements the SAS proper-
ties as follows:

Strong distributed correlated multi-streaming support: SAS
Kernel ensures correlated multi-streaming by (1) Managing and

keeping states of streams, bundles, sessions, and resources, (2) Pro-
viding streaming policies for correlated soft real-time scheduling,
co-operative congestion control, and overlay routing. The Manage-
ment Entities (Figure 1) handle correlated multi-streaming.

Universal access and easy availability: SAS Kernel provides
(1) Unified interface for end-devices, (2) Easily configurable stream
specifications to describe device and stream characteristics. The
SAS Interface (Section 5.1) provides universal access.

Runtime mechanisms and functions: (1) SAS Kernel follows
the principle of Separation of mechanism and policy [6], i.e., the
mechanisms only provide a unified framework for plugging-in the
policies/functions and the actual functions are implemented at the
user space, (2) SAS Kernel provides runtime loading of user-defined

functions operating over streams or bundles. The Runtime Entities
(Figure 1) and Function Manager (Section 5.2) provide functions
and mechanisms. This design also allows easy availability.

Robustness: To ensure robustness (1) A cross-layer online mon-
itoring interface is provided, (2) Runtime analysis of monitoring
data to trigger recovery procedures is done. The Monitoring Man-
ager (Figure 1) ensures robustness.

Scalability: SAS Kernel provides both device scalability and
stream service extensibility via (1) User-configurable interfaces with
varied end-devices, (2) Modular design of stream services to allow
user-defined functions on streams, (3) Modular design of all SAS
Kernel entities built on the principle of separation of concerns. The
SAS Interface and Function Manager (Section 5) discuss the exten-
sibility of the framework.

Session Manager

Management Entities

Bundle Manager

Bundle Policies, Management

Bundle QoS

Stream Manager

Realtime Distributed Streaming
Mechanisms: Stream QoS, Stream

Transformations

Resource Manager

Mechanisms: Bandwidth Management
Delay Management

TCP/UDP/DCCP

Mechanisms: Synchronization, Prioritization,

Session Functions

Viewcasting, Mesh, Peer−to−Peer

Bundle Functions

Multi−Stream Synchronization, BoS metrics

Stream Functions

Compression, Encryption

Resource Functions

Rate Control, Congestion Control,

Bandwidth Allocation Function

M
o
n
it

o
ri

n
g

Runtime Entities Monitoring Entity

Transport Subsystem

Overlay Network Resource Management

Mechanisms: Admission Control
Overlay Routing

Session Initiation, Adaptation, Management

Cooperative Congestion Control

S−RTP

Session
State

Bundle
State

Stream
State

Frame
State

Figure 1: SAS Kernel Framework

In SAS Kernel, the SAS properties get implemented as manage-
ment, runtime, and monitoring entities in the session subsystem on
top of a transport subsystem. Since streams are first class objects in
SAS Kernel, each of the entities keeps track of and controls streams
and stream derivatives (e.g., bundles, frames). Figure 1 shows the
layout of various entities over the transport subsystem. A brief de-
scription of each of them is as follows:

Management Entities: The management entities manage ses-
sions, bundles, streams, frames, and their corresponding resources.
They provide mechanisms for generic tasks like overlay routing and
provide interfaces to dynamically load the runtime entities. There
are four management entities:

1. Session Manager - It performs session initiation, member-
ship control, and session management. It takes management
decisions and provides mechanisms to load session level func-
tions like overlay routing and admission control.

82

2. Bundle Manager - It handles the correlation between the streams
and defines the policies to group multiple streams into corre-
lated bundles of streams. It provides mechanisms for runtime
functions over these correlated bundles of streams like coop-
erative congestion control, prioritization, view management,
and bundle of streams (BoS) metrics [1].

3. Stream Manager - It keeps states about receipt and delivery
of streams across sites and determines policies for stream-
ing. It categorizes streams as InStreams (from input devices)
and OutStreams (to output devices). Mechanisms for stream-
based runtime functions like compression, encryption are also
provided by this manager.

4. Resource Manager - It manages overlay network resources
like bandwidth and delay to ensure real-time delivery of streams.

Runtime Entities:The runtime entities provide specific system/user-
defined policies for the mechanisms like Mesh protocol for overlay
routing. These entities are dynamically pluggable real-time func-
tions operating over sessions, bundles, streams, frames, and net-
work resources. These entities are open to be either implemented
by SAS Kernel system-admins or the end-users. Examples of run-
time entities at each level are shown in Figure 1.

Monitoring Entity: SAS Kernel implements a cross-layer event-
driven monitoring entity. This entity provides real-time monitoring
plane for overall system monitoring. The monitoring entity forms
a feedback loop by communicating the states from the run-time
functions to the corresponding managers, allowing the managers to
take appropriate actions like adaptation, or policy switching. The
monitoring entity also monitors for faults and failures.

Transport Subsystem: To ensure soft real-time delivery, the
transport subsystem abstracts the underlying transport layer proto-
cols allowing end-users to dynamically request appropriate proto-
cols like TCP, UDP, DCCP based on application type and network
conditions. The frames are encapsulated using our DIME specific
S-RTP protocol (section 5.1.3) which adds semantic information
(used by managers) like stream type, functions requested, device
addressing, and streams in same bundle.

4. STREAM FLOW IN SAS KERNEL
Distributed SAS Kernel is realized through a set of multiple dis-

tributed SAS gateways and SAS interfaces as shown in Figure 2.
SAS gateways take on the responsibility of hosting the SAS Kernel
instances and the SAS interfaces (SASI) provide the connectivity
between the end-devices and the SAS Kernel. We assume that all
gateways and end-devices can be connected to each other via the
Internet. Figure 3 shows the end-devices, SAS interfaces, and the
functional placement of the SAS Kernel entities in a gateway. The
streaming algorithm is as follows:

Figure 2: Distributed SAS Kernel Components

UDP

Bundle
Functions

Session
Functions

Manager

FM

Manager

FM

Bundle
Manager

FM

Session
Manager

FM

TCP

Stream Resource

Functions Functions
Stream Resource

OutStreamsInStreams

Transport Abstraction Layer

XMLXML

DCCP

SAS Interface SAS Interface

Monitoring Manager

Gateway

Data Plane

Control Plane

Monitoring PlaneIN OUT

S−RTP

FM: Function
Manager

Figure 3: SAS Kernel Data, Control, and Monitoring Planes

1. Session Initiation: A streaming end-device first starts a con-
nection with the SAS interface present at the end-device ma-
chine. The SAS interface initiates a session with the closest
SAS gateway and requests the services specified in the user-
defined XML configuration. The request is handled by the
Session Manager in the gateway. It verifies if the requested
services are supported and sends an ACK to the SAS inter-
face. On positive ACK, Session Manager opens data and con-
trol connections with the end-device through the SAS inter-
face. It also constructs overlay routing topology with other
gateways, stores the meta-data about the new session, in-
stantiates a Stream Manager for the joined stream, groups
streams into bundles, and instantiates Bundle Manager.

2. End-to-End Streaming: An input device communicates its
stream to the SAS interface. The SAS interface applies the S-
RTP headers on each packet based on the information speci-
fied in the XML file. The packets are then sent over a chosen
transport layer protocol to the corresponding InStream in-
stantiated by the Stream Manager for this session. Once the
InStream starts to get delivered in SAS Gateway, the Stream
Manager creates corresponding sets of OutStreams based on
number of requesting output devices. The InStreams are then
connected to the respective OutStreams.

3. Runtime Functions: The run-time functions are loaded by
the Function Manager (FM) present in each of the Managers.
The InStreams and OutStreams are processed through the
Bundle Manager to apply user-demanded bundle functions
over bundles. The Stream Manager then applies stream based
functions. For resource optimization, Resource Manager ap-
plies policies for bandwidth management and congestion con-
trol. It must be noted that streams pass through all these
functions only when the user demands them. Thus, no ex-
tra overhead is incurred unless some functions are specified.
This ensures fastest delivery of streams.

4. Monitoring: Each entity implements hooks and callbacks to
send monitoring information like QoS performance, resource
utilization, and faults to the Monitoring Manager. Based on
the received information, Monitoring Manager takes appro-
priate QoS or fault tolerance measures.

5. SAS KERNEL DESIGN
The two main components of SAS Kernel are SAS Interface and

Kernel Function Managers which are discussed in detail in the fol-
lowing subsections.

83

5.1 SAS Interface
The device-SAS Kernel interface provides universal open access

(section 3) and faces the challenges of (1) Multiple non-standardized
stream formats of end-devices, (2) Requirement to understand all
the stream formats to allow functions over streams.

The above challenges severely affect the scability and flexibility
of the service gateways. To address this issue, current solutions
only implement a subset of these stream formats and thus, fail to
support devices from diverse vendors. Instead, our approach relies
on separating the stream formats from the main SAS Kernel using
configuration mechanisms to specify the formats at runtime. Thus,
SAS Kernel realizes four concepts: 1) End-to-End Tunneling, 2)
Device Stream Specification, 3) Semantic data propagation through
S-RTP, and 4) Service Negotiation.

5.1.1 End-to-End Tunneling

The idea behind SAS Kernel is that end-devices should interact
agnostic of the SAS Kernel i.e. the end-devices do not know if they
are communicating via SAS Kernel. The challenge in providing
agnostic connection is that there should be no source code modi-

fication at the end-devices. To achieve this, POSIX socket API is
used as an interface between end-devices and SAS Kernel.

G
SI

G

G G

SI

Tunneling

XML XML

Service
Negotiation

Service
Negotiation

Skt API

Skt API Skt API

Skt API

SI: Service Initiator : Data Flow

: Control FlowSkt API: Socket API

A−RTP A−RTP
Interface

SAS
Interface

SAS

IN OUT

Figure 4: Socket Interface and Tunneling

The assumption behind using socket API is that the end-devices
in DIMEs mostly follow client-server type of connections and they
usually provide interface to specify the IP and port number of the
remote device. Thus, the end-devices can be dynamically config-
ured to connect to the SAS interface. The SAS interface, placed
at each device, uses socket API to intercept the traffic from the in-
put devices and send it via the SAS Kernel to the output devices.
In addition, a peer-to-peer virtual tunnel is created between the de-
vices where the virtual tunnel is supported by the underlying SAS
Kernel. Figure 4 shows the socket interface and the tunnel.

5.1.2 Device Stream Specification

In order to apply functions on streams, SAS Kernel needs to
understand the semantics of the stream, i.e. the packet structure.
Thus, SAS interface requires end-users to provide a simple high-
level specification of the stream semantics in a user readable lan-
guage like XML. The specification is composed of two main parts:
(1) Device Specification containing general metadata about the de-
vice, (2) Stream Specification containing stream format.

The Device Specification consists of a unique identifier for ad-
dressing the device in the originating site, the content type (e.g.,
video, audio), content subtype (e.g., for video point cloud, mesh)
and the transport protocol the device uses (e.g., TCP, UDP). The
Stream Specification specifies the format of the sequence of data
packets as they appear within the stream. There are two general for-
mats: fixed-size packets and variable-size packets. The fixed-size
packets require only packet size to be specified while the variable-
size packets require a fixed size header containing the packet size to

 <PACKET_FIXED>

 </PACKET_FIXED>

 <PROTOCOL_TYPE> TCP </PROTOCOL_TYPE>

 <TYPE> </TYPE>VIDEO

 <SUBTYPE> </SUBTYPE>POINT−CLOUD

 <HANDSHAKE>ON </HANDSHAKE>

 <PACKET_SIZE>140 </PACKET_SIZE>

 <PACKET_COUNT>1 </PACKET_COUNT>

<DEVICE SPECIFICATION>

</DEVICE SPECIFICATION>

<STREAM SPECIFICATION>

 <PACKET_VARIABLE>

 </PACKET_VARIABLE>

 <HANDSHAKE> OFF</HANDSHAKE>

 <HEADER_SIZE> 10 </HEADER_SIZE>

 <HEADER_OFFSET> 6 </HEADER_OFFSET>

 <DATASIZE_TYPE> </DATASIZE_TYPE>4

 <PACKET_COUNT> −1 </PACKET_COUNT>

</STREAM SPECIFICATION>

Figure 5: Device Stream Specification for a video stream

be specified. Other stream parameters like frame rate, color infor-
mation are specified through Handshake packets between the end-
devices. This specification allows for marking packets as Hand-

shake packets. SAS Kernel forms a multicast network between the
input devices and the output devices, requiring storing and replay-
ing these Handshake packets when new output devices are added
to the kernel. The packet count specifies how many of each type of
packets are present consecutively in the stream.

Figure 5 shows an example XML configuration file used in the
3D Tele-immersion system in our lab for a video stream. The cam-
era protocol is comprised of single fixed handshake packet of 140
bytes followed by all (packet count of -1 indicates possibly infinite)
payload packets of variable size that have a header of 10 bytes, with
packet size specified at byte 6 in the header. Moreover, this spec-
ification is easy to implement and flexible enough to allow a wide
range of end-devices to interface with our SAS interface without
modification or recompilation.

5.1.3 SAS Real-Time Protocol (S-RTP)

Each data packet read by the SAS interface is then encapsulated
using the SAS Real-Time Protocol. S-RTP is similar to RTP but it
is tailored to include DIME specific session semantics and lighter-
weight. Through S-RTP, session semantics like device address-
ing, services requested, and groups of streams forming bundles
are marked on each packet, allowing easy dissemination of each
stream’s state to all SAS components.

0−31 32−47 48−63 64−95 96−127

Version SID RID DID TOS

Stream Type Stream SubType Frame Timestamp

<BundleList> Header Payload(Variable)

... (Variable Payload) Frame Number

Bit

0

128

256

256+64*C+64

Offset

Figure 6: S-RTP Header Specification

The structure of the S-RTP packet is shown in Figure 6. The
packet first specifies the version of the S-RTP protocol followed
by a 64 bit unique stream identifier. The unique identifier uses a
hierarchical addressing scheme composed of the DIME session ID
(SID), the DIME site/room identifier (RID), and the device identi-
fier (DID) within the room. The Type of Service (TOS), a 64 bit
flag vector, specifies the requested functions, the state information
about functions that were applied along the route in SAS Kernel,
and a Handshake bit to specify Handshake packet.

The stream type and subtype together form a tuple to uniquely
identify the type (video, audio, sensory data) and the data format
(e.g. for video, mesh and point-cloud). Next, S-RTP packet con-

84

tains a list of all stream IDs forming a bundle <BundleList>, times-
tamp of packet creation, fixed/variable payload, and frame number.

5.1.4 Service Initiation and Negotiation

After reading the stream specification and constructing an S-RTP
packet, the SAS interface at the joining end-device initiates a ses-
sion with the SAS Kernel. The Session Manager in the SAS Kernel
handles the session initiation and service negotiation tasks. Re-
mote procedure calls (RPC) and marshalling is used between SAS
interface and SAS Kernel and simple session initiation and nego-
tiation protocols are used as can be found in the literature. Our
contribution in SAS Kernel is that the SAS Kernel allows dynamic
pluggability of different correlations based admission control and
bundle routing algorithms as need arises in the session and resource
management.

The SAS interface sends a JOIN request message specifying de-
sired transport protocol to use, the characteristics of the bundles and
joining streams (e.g., periodic or aperiodic, variable or fixed packet
sizes, payload type, payload sub-type, expected bandwidth usage),
and the services requested (encryption, compression, congestion
control). Upon receipt of the JOIN message, the SAS Kernel ver-
ifies whether it can support services requested, and if so, opens
required data ports and returns an ACK containing the ports. The
SAS Kernel renegotiates if it does not support any of the services
with the SAS interface. The Session Manager in SAS Kernel then
creates InStreams and Bundles accordingly, bookmarks the param-
eters, and uses the data channels for data transfer.

In case of output end-device join, the payload type and subtype
tuple provides a hierarchical way for the SAS Kernel to determine
which bundles should be routed to the output device by match-
ing the payload type and sub-type of the possessed InStreams with
those specified. For example, one may use two renderers to display
the frontal and back camera streams respectively; although they all
identify the “video” type, one renderer and the frontal cameras use
the “frontal” sub-type, and the other renderer and the back cameras
use the “back” sub-type.

The strategy for interconnection and exchange of streams be-
tween the SAS gateways depends on the chosen routing protocol
in the SAS Kernel. Some useful routing protocols for DIMEs are
application level multicasting [17] like Viewcasting, Mesh. The
discussion of these routing algorithms is out of scope of this paper.

5.2 SAS Kernel Function Manager
In order to provide runtime stream-processing functions, i.e.,

user controllable functions (as discussed in section 3), each man-
ager in SAS Kernel implements a Function Manager (FM) as shown
in Figure 3. The function manager is responsible for: (1) Imple-
menting mechanisms, and (2) Scheduling functions on bundles,
streams, and frames.

To support extensible operations, SAS Kernel divides the exe-
cution plane in two spaces: End-User Space and System Space.
User-controllable functions are in the End-User Space while all the
other SAS Kernel functions and resource management remain in
the System Space. New functions to be added to the SAS Kernel
are compiled separately by end-users into dynamically linked li-
braries and these functions are loaded and linked at runtime by the
FM. Functions interact with FM using system calls (Syscalls) and
FM uses Upcalls to the functions. Figure 7 shows FM architecture.

The Syscalls provide direct access to the bundle and stream meta-
data, S-RTP packet format, and also to the raw payload imple-
mented by the end-devices. Each function implements an object
and FM keeps the state information, allocates memory and forks
threads. This makes FM suitable for supporting parallel concurrent

..F2

Function

MANAGER ENTITY

Kernel
Space

SAS

End−User
Space

OS Kernel Space

Space

Bundle/

Frame

Bundle/
Stream/
Frame

Stream/

U
p
c
a
ll

S
y
s
c
a
ll

U
p
c
a
ll

S
y
s
c
a
ll

U
p
c
a
ll

S
y
s
c
a
ll

Interface

Scheduler

Operating System

F: Function

F1 Fn

System

Manager

Figure 7: SAS Kernel Function Manager

functions. Functions are executed as a computing pipeline where
the user can configure the order in which the operations are ap-
plied. A scheduler inside FM is responsible of context switching
to the corresponding operation. FM thus provides the support for
defining mechanisms at each level of data abstraction and load user-
specific functions to implement these mechanisms. This ensures
high extensibility of services in SAS Kernel.

6. EVALUATION
We evaluate the performance of SAS Kernel in a real 3D Teleim-

mersion (3DTI) DIME System at University of Illinois, Urbana
Champaign. 3DTI typically includes 4 to 5 sites, each producing
4 to 5 streams comprising of 3D cameras and microphones. Each
site spawns a gateway for the SAS Kernel. Each stereo camera pro-
duces a variable 3D video stream ranging between 6 to 10Mbps.
The SAS Kernel is supported over both Linux and Windows. To
evaluate the strength of the SAS framework, third-party softwares
for 3D camera from UC, Berkeley and renderer from UC, Davis are
used. No source code modification in these third party softwares
was needed and these end-devices could easily interface with SAS
Kernel by only specifing device configuration in simple XML file.

We compare the performance of SAS Kernel in terms of over-
heads incurred on a) End-to-End Delay, b) CPU, and c) Bandwidth.
We perform two experiments: Experiment 1) SAS Kernel consists
of one gateway with 1 to 6 bundles with 2 video streams each, Ex-
periment 2) SAS Kernel consists of two gateways, each with 1 to
6 bundles with 4 video streams each, and 2 output devices (ren-
derer and the other gateway). So, each gateway receives total 24
instreams and sends 24 corresponsing outstreams. It is to be noted
that 12 and 24 streams per site is a large workload in DIME scenario
in terms of bandwidth (120 to 240 Mbps), CPU (24 to 48 threads),
and current applications. Thus, the evaluation highly stresses the
system. Moreover, multiple gateways can be spawned to balance
the load in the event of dramatic increase in streams. For repeatabil-
ity, we use a recorded creative dance performance. For the gateway
server, we use 4 Dell Precision 670 with dual Intel Xeon processor.

End-to-End Delay Overhead: The major goal of the kernel is to
support real-time streaming even under heavy loads. We evaluate
the total delay overhead added by the SAS Kernel wherein total
delay is the difference between the entry time of a frame and the
exit time of that frame from the SAS Kernel. Figures 8(a), 8(b)
show that the total delay is less than 3 milliseconds even for 12
concurrent streams, and increases minimally on using 2 sites and
24 streams. This shows that SAS Kernel meets the soft real-time
requirements of streaming while efficiently providing SAS.

CPU Overhead: It is important for SAS Kernel to scale in terms
of CPU demands as large number of end-devices is added to the
system. As shown in Figures 8(c), 8(d), the average CPU overhead
ranges between 2% for 2 streams to 20% for 12 streams in Exper-
iment 1. On doubling the number of sites and streams, the average

85

 0

 2.5

 5

 7.5

 10

 0 100 200 300 400

D
e

la
y
 (

M
il
li
s
e

c
o

n
d

s
)

FrameID

2
4
6
8

10
12

(a) SAS Kernel delay over single gate-
way

 0

 2.5

 5

 7.5

 10

 0 100 200 300 400

D
e

la
y
 (

M
il
li
s
e

c
o

n
d

s
)

FrameID

4
8

12
16
20
24

(b) SAS Kernel delay over multi-
gateways

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 C

P
U

 U
ti
li
z
a

ti
o

n

Time (Seconds)

2
4
6
8

10
12

(c) SAS Kernel CPU demand over
single gateway

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 C

P
U

 U
ti
li
z
a

ti
o

n

Time (Seconds)

4
8

12
16
20
24

(d) SAS Kernel CPU demand over
multi-gateways

Figure 8: SAS Kernel Evaluation

CPU requirement only increases to 10% for 4 streams and 30% for
24 streams. This emphasizes that SAS Kernel demands low CPU
even when large number of sensors are connected to it.

Bandwidth Overhead: SAS Kernel adds S-RTP header on the
data packets and uses Google Protobufs for marshalling S-RTP
frames. Some DIME applications are bandwidth hungry, so it is
important that SAS Kernel itself does not add too much bandwidth
overhead. For the current implementation of the SAS Kernel, only
a fixed cost of 22 bytes per frame is incurred as S-RTP header. The
Google Protobuf only adds 4 bytes to the header. Thus, a total of 26

extra bytes per frame over frame size ranging from 2KB to 30KB
for 3D-video frames and 140Bytes of audio frames is incurred.

7. RELATED WORK
SAS Kernel synthesizes ideas from service gateways, network

services, and operating systems. We discuss the related work in
these research areas. In [9], [10], [13], [14] general architectures
for home, sensor, and streaming gateways, supporting small set of
functionalities like protocol translation, media transcoding, admis-
sion control, data processing, synchronization are presented. These
gateways focus on a small subset of the SAS requirements and
hence fail to provide major SAS services.

In network services, OSGi [7] is a java-based service platform
for home networks allowing service providers to dynamically load
and deliver services to the end users. However, it is very cumber-
some to build complex systems like multi-correlated streaming over
low-level OSGi [3]. In [12], user-configuration is used for setting
class of service policies in routers. Our approach however, focuses
on using user configurations to manage multi-streaming sessions.

SAS Kernel also draws concepts from operating systems like
application-level functions in [4] and interface for run-time func-
tions in [18]. In [2], resource containers are presented to provide re-
source management over processes and threads for network servers.
Compared to [2], our approach is at a higher level of abstraction
spanning across sites, sessions and streams.

8. CONCLUSION
Our main thesis is that multi-streaming in DIMEs should be

modeled as a real-time, generic, flexible, scalable, and robust Stream-
ing as a Service (SAS) for highly correlated sensory data over the
Internet. We introduce the concept of SAS and its implementation
in the distributed SAS Kernel. SAS Kernel is a proof-of-concept
architecture of this SAS model. SAS Kernel supports various types
of sensors, transport and session protocols, as well as dynamically
loaded functions such as congestion control, compression, and syn-
chronization. Our experiments in a real DIME testbed indicate that
SAS Kernel is successful at providing the service without much
overhead time-wise (i.e., delay) and space-wise (i.e., bandwidth).

9. ACKNOWLEDGMENT
This research is supported by grants NSF CNS 09-64081, NSF

CNS 08-34480, NSF CNS 07-20702, and NSF CNS 10-12194. The
presented views are those of authors only.

10. REFERENCES
[1] P. Agarwal et al. Bundle of streams: Concept and evaluation

in distributed interactive multimedia environments. In ISM,
2010.

[2] G. Banga et al. Resource containers: a new facility for
resource management in server systems. In OSDI, 1999.

[3] H. Cervantes et al. Beanome: A component model for the
osgi framework. In Software infrastructures for
component-based applications on consumer devices, 2002.

[4] D. Engler et al. Exokernel: an operating system architecture
for application-level resource management. In SOSP, 1995.

[5] G. Kurrilo et al. Immersive 3d environment for remote
collaboration and training of physical activities. In VR, 2008.

[6] B. Lampson et al. Reflections on an operating system design.
Commun. ACM, 19:251–265, 1976.

[7] D. Marples et al. The open services gateway initiative: an
introductory overview. IEEE Commun., 39(12):110 –114,
2001.

[8] K. Nahrstedt et al. Next generation session management for
3d teleimmersive interactive environments. MTAP,
51:593–623, 2011.

[9] S. Roy et al. A system architecture for managing mobile
streaming media services. Distributed Computing Systems,
0:408, 2003.

[10] P. Schramm et al. A service gateway for networked sensor
systems. Pervasive Computing, 3(1):66 – 74, 2004.

[11] R. Sheppard et al. Advancing interactive collaborative
mediums through tele-immersive dance (ted): a symbiotic
creativity and design environment for art and computer
science. In ACM Multimedia, 2008.

[12] Y. E. Sung et al. Modeling and understanding end-to-end
class of service policies in operational networks. In
SIGCOMM, 2009.

[13] D. Valtchev et al. Service gateway architecture for a smart
home. IEEE Commun., 40(4):126 –132, 2002.

[14] M. Weihs. Design issues for multimedia streaming gateways.
Mobile Communications and Learning Technologies, 0:101,
2006.

[15] W. Wu et al. Implementing a distributed tele-immersive
system. In ISM, 2008.

[16] W. Wu et al. "i’m the jedi!" - a case study of user experience
in 3d tele-immersive gaming. ISM, 2010.

[17] C. K. Yeo et al. A survey of application level multicast
techniques. Computer Commun., 27(15):1547–1568, 2004.

[18] G. Zhenyu et al. R2: An application-level kernel for record
and replay. In OSDI, 2008.

86

